• 제목/요약/키워드: Chemical deterioration

검색결과 471건 처리시간 0.023초

화학적 침식을 받은 하수처리시설 콘크리트 구조물의 성능저하에 대한 미세구조적 관찰 (Microstructural Observations on the deterioration of Concrete Structure for Wastewater Treatment Facilities Subjected to Chemical Attack)

  • 김성수;이승태;박광필;봉원용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.547-550
    • /
    • 2005
  • Recently, there has been a intensive social interest for concrete structures with respect to durability by carbonation, chemical attack etc. Specially, the deterioration of concrete due to chemical attack in environments such as Wastewater Treatment Facilities is important factors degrading the durability of concrete structure. The purpose of this paper is to evaluate on deterioration of Wastewater Treatment Facilities concrete to chemical attack through instrumental analysis such as XRD, SEM and EDS. According to the results of this study. Wastewater Treatment Facilities concrete to chemical attack due to $So_{4}^{2-},\;Mg^{2+}$ ions founded out to appear deterioration materials peak : ettringite/thaumasite. gypsum and brucite peak.

  • PDF

특정환경조건하에서의 콘크리트 내 이차광물생성과 그에 수반된 성능저하현상 (Secondary Mineral Formation and Concrete Deterioration Caused by Certain Environmental Conditions)

  • 이효민;황진연;진치섭;이진성;전쌍순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.651-656
    • /
    • 2003
  • Durability of concrete is possibly related to externally-induced chemical attacks in addition to internally-induced deterioration. Externally-induced chemical attacks can be derived from various sources according to environmental conditions under which concrete structures are existing. The present study investigates the characteristic concrete deterioration and formation of secondary minerals by external chemical attacks under certain environmental condition. Petrographic microscope, SEM, EDAX, XRD analyses were conducted to identify secondary mineral formation and micro-structural analyses.

  • PDF

터널 숏크리트 라이닝의 장기 화학적 열화 손상 평가를 위한 수치 모델링 기법 개발 (Development of a numerical modelling technique for evaluation of a long-term chemical deterioration of tunnel shotcrete lining)

  • 신휴성;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제9권3호
    • /
    • pp.299-307
    • /
    • 2007
  • 본 논문에서는 터널 숏크리트 라이닝의 장기 화학적 열화에 의한 물리적 손상을 수치적으로 모델링하기 위한 새로운 개념의 해석기법이 제안되었다. 이러한 물리적 손상은 내부균열 발생, 재료 강성과 강도의 저하에 의해 주로 유발되며, 이들은 장기 화학적 열화반응에 의한 체적팽창 및 시멘트질의 침식에 의해 발생된다. 결과적으로, 이러한 숏크리트 라이닝의 손상 메카니즘은 터널내에서 발생할 수 있는 다양한 종류의 열화반응들에서 유사하게 나타난다. 따라서, 본 연구에서는 일련의 화학적 열화 반응에 기인한 물리적 손상 메카니즘을 일반화 하였으며, 열역학에 기반한 수치모델을 수학적으로 유도 하였다. 유도된 수치모델은 3차원 유한요소 프로그램으로 코드화되었으며, 외력과 장기 화학적 열화를 겪고 있는 터널 구조물의 시간의존성 거동 시뮬레이션에 적용된다. 개발된 코드는 몇 개의 예제 수행을 통해 터널설계상에서의 적용성을 검토하였으며, 동일한 열화조건하에서도 주변 지반응력상태에 따라 물리적 손상 속도와 정도가 크게 달라짐을 보였다.

  • PDF

MPPF 커패시터의 전기적, 열적 열화시 소체의 화학적특성에 관한 연구 (A Study on Chemical Characteristic of Electrically and Thermally Treated MPPF Capacitor Elements)

  • 구교선;송현석;이동준;곽희로;송길목
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.227-230
    • /
    • 2001
  • This paper divides the factors of an accident into two parts, that are electrical deterioration and thermal deterioration, to analyze a characteristic of the factor of an accident which can break out in the capacitor of metal vaporized polypropylene film. For the purpose of creating capacitor which is caused by electric deterioration, we applied DC overvoltage, induced self-healing and breakdown from element. We applied gradual heat to get an element which is cause by thermal deterioration. The chemical structure of the shape and surface is analyzed by thermogravimetric analyzer (TGA), Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectrometer(FT-IR). As a result, the peak of methylene group came out, in case of electrical deterioration, as observing the self-healing point. However, the peak is disappeared in the heat treated element by 500[$^{\circ}C$], and the peak of carbonyl group which has C=O came out in case of thermal deterioration.

  • PDF

Corona 방전에 의한 Polyethylene의 표면열화현상 (Surface Deterioration Phenomena in Polyethylene under Corona Discharge)

  • 성영권;송진수;민남기
    • 전기의세계
    • /
    • 제24권5호
    • /
    • pp.82-90
    • /
    • 1975
  • This study investigated the deterioration phenomena of the Polyethylene surface contaminated with organic(Saccharose) or inorganic(NaCl) matters through electrical and optical experiments. And also these experimental results relatively well coincided with which was treated by theoretical process. On the electrical experiment, relation between electric field intensity in corona discharge and time reached to the breakdown, and relation between total amount of charges discharged and increment of applied voltage were investigated. On the optical experiment, discharge time dependence of surface deterioration rate and process of surface deterioration in the X-ray diffraction pattern were investigated. It was concluded that chemical effects by the corona discharge deteriorated insulation characteristics of Polyethylene surface.

  • PDF

터널 지보용 숏크리트의 유해이온에 대한 열화특성 (Deterioration Properties of Shotcrete as Tunnel Supporter was Exposed to Harmful Ions)

  • 정호섭;김동규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권5호
    • /
    • pp.55-64
    • /
    • 2008
  • 유해 환경하에 노출된 숏크리트는 시간이 경과함에 따라 각종 유해이온의 침식으로 인하여 열화하게 된다. 본 연구에서는 이와 같은 환경에 노출된 숏크리트의 열화특성을 평가하기 위하여 황산염 및 산에 대한 화학적침식에 대하여 유해이온에 각각 60주 동안 침지한 숏크리트 코어 공시체를 대상으로 외관조사, 압축강도, 부착강도 및 기기분석을 실시하였다. 그 결과 용액의 종류에 관계없이 침지재령 60주에서 균열, 박리 등으로 인한 표면손상이 심각한 상태였으며, 압축 및 부착강도는 초기재령에서는 수중양생한 공시체보다 상회하는 결과를 보였으나 장기재령에서는 역전되는 현상을 보여주었다.

서냉 및 급냉슬래그를 적용한 콘크리트의 복합열화 저항성 (Resistance of concrete made with air- and water-cooled slag exposed to multi-deterioration environments)

  • 이승태;박광필;박정희;박세호
    • 한국도로학회논문집
    • /
    • 제20권3호
    • /
    • pp.11-18
    • /
    • 2018
  • PURPOSES : Durability of concrete is traditionally based on evaluating the effect of a single deterioration mechanism such as freezing & thawing action, chloride attack, carbonation and chemical attack. In reality, however, concrete structures are subjected to varying environmental exposure conditions which often results in multi-deterioration mechanism occurring. This study presents the experimental results on the durability of concrete incorporating air-cooled slag(AS) and/or water-cooled slag(WS) exposed to multi-deterioration environments of chloride attack and freezing & thawing action. METHODS : In order to evaluate durable performance of concretes exposed to single- and multi-deterioration, relative dynamic modulus of elasticity, mass ratio and compressive strength measurements were performed. RESULTS :It was observed that multi-deterioration severely affected durability of concrete compared with single deterioration irrespective of concrete types. Additionally, the replacement of cement by AS and WS showed a beneficial effect on enhancement of concrete durability. CONCLUSIONS : It is concluded that resistance to single- and/or multi-deterioration of concrete is highly dependent on the types of binder used in the concrete. Showing the a good resistance to multi-deterioration with concrete incorporating AS, it is also concluded that the AS possibly is an option for concrete materials, especially under severe environments.

Chemical Properties of Artificially Buried Wood in an Intertidal Zone during the Deterioration Period

  • SEO, Sujin;KIM, Taekjoon;LEE, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권6호
    • /
    • pp.896-906
    • /
    • 2020
  • Wood deterioration experiments were carried out for 6 months in an intertidal zone of South Korea to monitor the changes in the chemical properties of two types of species, Korean red pine and sawtooth oak. The results of FT-IR spectra and XRD patterns have shown that the chemical properties of the wood did not change significantly during the 6-month burial period. However, the brightness of the surface decreased after burial; the value of the sawtooth oak sample was lower than that of the Korean red pine sample owing to an accumulation of inorganic compounds in cell lumen as observed by ICP analysis. Among the inorganic compounds, sodium and sulfur concentrations increased significantly over the burial period compared with the control. Further, the maximum moisture content decreased from 199% to 136% in the Korean red pine and 62% to 60% for the sawtooth oak. Nevertheless, the major chemical composition of both the wood species did not change significantly during the 6-month burial period, whereas, the crystallinity decreased with an increasing burial period owing to an accumulation of inorganic compounds in the lumen.

농수로 구조물의 내구성 저하 요인 (Deterioration Factors of Agricultural Hydraulic Structures)

  • 조성현;김진만;김기동;고만기;김종옥
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.647-650
    • /
    • 1999
  • Deterioration of agricultural hydraulic structures(AHS), which are under harsh environmental conditions, is more sever than other ordinary structures. To investigate the deterioration factors of AHS, various physical and chemical analyses are performed. The porosity of AHS increases more rapidly than ordinary structures because they are subject to frequent water permeation and water-soluble materials are easily emitted to surface area. Thus, AHS are tend to be damaged by freezing and thawing more easily due to the increase of water containment inside concrete.

  • PDF

해수를 사용한 혼합시멘트계 콘크리트의 동결융해 저항성 (Freeze-Thaw Resistance of Blended Cement Concrete using Seawater)

  • 문한영;김성수;이승태;김종필;박광필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.725-730
    • /
    • 2002
  • The durability of concrete involves resistance to freeze-thaw action, corrosion, permeation, carbonation, chemical attack and so on. Generally, properties of concrete have been well understood under the separate action of these deterioration mechanisms. However, in practice, the degradation of concrete usually is the result of combined action of physical and chemical attack and can be accelerated by the combined action of several deterioration mechanisms. In the present study, to evaluate the combined deterioration by freeze-thaw action and seawater attack, ground granulated blast-furnace slag or silica fume concrete with water or seawater as mixing water was exposed to 210 cycles of freeze-thaw action. Tests were conducted to determined the relative dynamic modulus of elasticity and compressive strength. Furthermore, The XRD, SEM and EDS analysis were performed on the deteriorated part of concrete due to freeze-thaw action and seawater attack.

  • PDF