• Title/Summary/Keyword: Chemical deterioration

Search Result 471, Processing Time 0.023 seconds

Microstructural Observations on the deterioration of Concrete Structure for Wastewater Treatment Facilities Subjected to Chemical Attack (화학적 침식을 받은 하수처리시설 콘크리트 구조물의 성능저하에 대한 미세구조적 관찰)

  • Kim Seoung Soo;Lee Seung Tae;Park Kwang Pil;Bong Won Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.547-550
    • /
    • 2005
  • Recently, there has been a intensive social interest for concrete structures with respect to durability by carbonation, chemical attack etc. Specially, the deterioration of concrete due to chemical attack in environments such as Wastewater Treatment Facilities is important factors degrading the durability of concrete structure. The purpose of this paper is to evaluate on deterioration of Wastewater Treatment Facilities concrete to chemical attack through instrumental analysis such as XRD, SEM and EDS. According to the results of this study. Wastewater Treatment Facilities concrete to chemical attack due to $So_{4}^{2-},\;Mg^{2+}$ ions founded out to appear deterioration materials peak : ettringite/thaumasite. gypsum and brucite peak.

  • PDF

Secondary Mineral Formation and Concrete Deterioration Caused by Certain Environmental Conditions (특정환경조건하에서의 콘크리트 내 이차광물생성과 그에 수반된 성능저하현상)

  • 이효민;황진연;진치섭;이진성;전쌍순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.651-656
    • /
    • 2003
  • Durability of concrete is possibly related to externally-induced chemical attacks in addition to internally-induced deterioration. Externally-induced chemical attacks can be derived from various sources according to environmental conditions under which concrete structures are existing. The present study investigates the characteristic concrete deterioration and formation of secondary minerals by external chemical attacks under certain environmental condition. Petrographic microscope, SEM, EDAX, XRD analyses were conducted to identify secondary mineral formation and micro-structural analyses.

  • PDF

Development of a numerical modelling technique for evaluation of a long-term chemical deterioration of tunnel shotcrete lining (터널 숏크리트 라이닝의 장기 화학적 열화 손상 평가를 위한 수치 모델링 기법 개발)

  • Shin, Hyu-Soung;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.299-307
    • /
    • 2007
  • In this study, a new concept for simulating a physical damage of tunnel shotcrete lining due to a long-term chemical deterioration has been proposed. It is known that the damage takes place mainly by internal cracks, reduction of stiffness and strength, which results mainly from volume expansion of the lining and corrosion of cement materials, respectively. This damage mechanism of shotcrete lining appears similar in most kinds of chemical reactions in tunnels. Therefore, the mechanical deterioration mechanism induced by a series of chemical reactions was generalized in this study and mathematically formulated in the framework of thermodynamics. The numerical model was implemented to a 3D finite element code, which can be used to simulate behaviour of tunnel structures undergoing external loads as well as chemical deterioration in time. A number of illustrative examples were given to show a feasibility of the model in tunnel designs.

  • PDF

A Study on Chemical Characteristic of Electrically and Thermally Treated MPPF Capacitor Elements (MPPF 커패시터의 전기적, 열적 열화시 소체의 화학적특성에 관한 연구)

  • Koo, Kyo-Sun;Song, Hyun-Seok;Lee, Dong-Zoon;Kwak, Hee-Ro;Shong, Kil-Mok
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.227-230
    • /
    • 2001
  • This paper divides the factors of an accident into two parts, that are electrical deterioration and thermal deterioration, to analyze a characteristic of the factor of an accident which can break out in the capacitor of metal vaporized polypropylene film. For the purpose of creating capacitor which is caused by electric deterioration, we applied DC overvoltage, induced self-healing and breakdown from element. We applied gradual heat to get an element which is cause by thermal deterioration. The chemical structure of the shape and surface is analyzed by thermogravimetric analyzer (TGA), Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectrometer(FT-IR). As a result, the peak of methylene group came out, in case of electrical deterioration, as observing the self-healing point. However, the peak is disappeared in the heat treated element by 500[$^{\circ}C$], and the peak of carbonyl group which has C=O came out in case of thermal deterioration.

  • PDF

Surface Deterioration Phenomena in Polyethylene under Corona Discharge (Corona 방전에 의한 Polyethylene의 표면열화현상)

  • 성영권;송진수;민남기
    • 전기의세계
    • /
    • v.24 no.5
    • /
    • pp.82-90
    • /
    • 1975
  • This study investigated the deterioration phenomena of the Polyethylene surface contaminated with organic(Saccharose) or inorganic(NaCl) matters through electrical and optical experiments. And also these experimental results relatively well coincided with which was treated by theoretical process. On the electrical experiment, relation between electric field intensity in corona discharge and time reached to the breakdown, and relation between total amount of charges discharged and increment of applied voltage were investigated. On the optical experiment, discharge time dependence of surface deterioration rate and process of surface deterioration in the X-ray diffraction pattern were investigated. It was concluded that chemical effects by the corona discharge deteriorated insulation characteristics of Polyethylene surface.

  • PDF

Deterioration Properties of Shotcrete as Tunnel Supporter was Exposed to Harmful Ions (터널 지보용 숏크리트의 유해이온에 대한 열화특성)

  • Jung, Ho-Seop;Kim, Dong-Gyou
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.55-64
    • /
    • 2008
  • Shotcrete have become a deterioration which was exposed to harmful environments. In this study, in order to evaluate the deterioration properties of shotcrete, visual examination, compressive strength, adhesive strength, microstructural analysis were investigated up to the 60th weeks of exposure. The attack solutions for test are sodium sulfate and hydrochloric acid solution with different concentrations, respectively. From the results, although the compressive strength of shotcrete specimens and the adhesive strength between specimens and rocks were high at the early immersion age, they rapidly dropped in the subsequent phases, especially in 5% sodium sulfate and pH1 hydrochloric acid solution. With continued exposure, various harmful ions penetrated into the shotcrete specimen, reacted with the cement hydrate, and generated expansion substances. It was verified that the shotcrete specimens suffered a serious deterioration by chemical attack.

Resistance of concrete made with air- and water-cooled slag exposed to multi-deterioration environments (서냉 및 급냉슬래그를 적용한 콘크리트의 복합열화 저항성)

  • Lee, Seung-Tae;Park, Kwang-Pil;Park, Jung-Hee;Park, Se-Ho
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2018
  • PURPOSES : Durability of concrete is traditionally based on evaluating the effect of a single deterioration mechanism such as freezing & thawing action, chloride attack, carbonation and chemical attack. In reality, however, concrete structures are subjected to varying environmental exposure conditions which often results in multi-deterioration mechanism occurring. This study presents the experimental results on the durability of concrete incorporating air-cooled slag(AS) and/or water-cooled slag(WS) exposed to multi-deterioration environments of chloride attack and freezing & thawing action. METHODS : In order to evaluate durable performance of concretes exposed to single- and multi-deterioration, relative dynamic modulus of elasticity, mass ratio and compressive strength measurements were performed. RESULTS :It was observed that multi-deterioration severely affected durability of concrete compared with single deterioration irrespective of concrete types. Additionally, the replacement of cement by AS and WS showed a beneficial effect on enhancement of concrete durability. CONCLUSIONS : It is concluded that resistance to single- and/or multi-deterioration of concrete is highly dependent on the types of binder used in the concrete. Showing the a good resistance to multi-deterioration with concrete incorporating AS, it is also concluded that the AS possibly is an option for concrete materials, especially under severe environments.

Chemical Properties of Artificially Buried Wood in an Intertidal Zone during the Deterioration Period

  • SEO, Sujin;KIM, Taekjoon;LEE, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.896-906
    • /
    • 2020
  • Wood deterioration experiments were carried out for 6 months in an intertidal zone of South Korea to monitor the changes in the chemical properties of two types of species, Korean red pine and sawtooth oak. The results of FT-IR spectra and XRD patterns have shown that the chemical properties of the wood did not change significantly during the 6-month burial period. However, the brightness of the surface decreased after burial; the value of the sawtooth oak sample was lower than that of the Korean red pine sample owing to an accumulation of inorganic compounds in cell lumen as observed by ICP analysis. Among the inorganic compounds, sodium and sulfur concentrations increased significantly over the burial period compared with the control. Further, the maximum moisture content decreased from 199% to 136% in the Korean red pine and 62% to 60% for the sawtooth oak. Nevertheless, the major chemical composition of both the wood species did not change significantly during the 6-month burial period, whereas, the crystallinity decreased with an increasing burial period owing to an accumulation of inorganic compounds in the lumen.

Deterioration Factors of Agricultural Hydraulic Structures (농수로 구조물의 내구성 저하 요인)

  • 조성현;김진만;김기동;고만기;김종옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.647-650
    • /
    • 1999
  • Deterioration of agricultural hydraulic structures(AHS), which are under harsh environmental conditions, is more sever than other ordinary structures. To investigate the deterioration factors of AHS, various physical and chemical analyses are performed. The porosity of AHS increases more rapidly than ordinary structures because they are subject to frequent water permeation and water-soluble materials are easily emitted to surface area. Thus, AHS are tend to be damaged by freezing and thawing more easily due to the increase of water containment inside concrete.

  • PDF

Freeze-Thaw Resistance of Blended Cement Concrete using Seawater (해수를 사용한 혼합시멘트계 콘크리트의 동결융해 저항성)

  • 문한영;김성수;이승태;김종필;박광필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.725-730
    • /
    • 2002
  • The durability of concrete involves resistance to freeze-thaw action, corrosion, permeation, carbonation, chemical attack and so on. Generally, properties of concrete have been well understood under the separate action of these deterioration mechanisms. However, in practice, the degradation of concrete usually is the result of combined action of physical and chemical attack and can be accelerated by the combined action of several deterioration mechanisms. In the present study, to evaluate the combined deterioration by freeze-thaw action and seawater attack, ground granulated blast-furnace slag or silica fume concrete with water or seawater as mixing water was exposed to 210 cycles of freeze-thaw action. Tests were conducted to determined the relative dynamic modulus of elasticity and compressive strength. Furthermore, The XRD, SEM and EDS analysis were performed on the deteriorated part of concrete due to freeze-thaw action and seawater attack.

  • PDF