• Title/Summary/Keyword: Chemical condition

Search Result 4,194, Processing Time 0.034 seconds

The Excitability by Both Electric and Concentrative Perturbation in CSTR

  • Bae, Jeong Min;Cho, Ung In
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1145-1148
    • /
    • 2006
  • Excitability is one of the basic and fundamental mechanisms utilized for signal transmission in living organisms. With reference to the condition by Marek and the condition by Schneider, we found a condition in which excitability with similar shapes can appear by chemical and electric perturbation. Our condition is constructed with 3 chemical channels and 1 electric channel, and can be used as a condition for a chemical spiking neuron and as a unit of a chemical spiking neural network.

Numerical simulation of coextrusion process of viscoelastic fluids using the open boundary condition method

  • Park, Seung-Joon;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.37-45
    • /
    • 2001
  • Numerical simulation of coextrusion process of viscoelastic fluids within a die has been carried out. In the coextrusion process velocity profile at the outflow boundary is not known a priori, which makes it difficult to impose the proper boundary condition at the outflow boundary. This difficulty has been avoided by using the open boundary condition (OBC) method. In this study, elastic viscous stress splitting (EVSS) formulation with streamline upwind (SU) method has been used in the finite element method. In order to test the validity of the OBC method, comparison between the results of fully developed condition at the outlet and those of OBC has been made for a Newtonian fluid. In the case of upper convected Maxwell (UCM) fluid, the effect of outflow boundary condition on the interface position has been investigated by using two meshes having different downstream lengths. In both cases, the results with the OBC method showed reasonable interface shape. In particular, for the UCM fluid the interface shape calculated with OBC was independent of the downstream length, while the results with the zero traction condition showed oscillation of interface position close to the outlet. Viscosity difference was found to be more important than elasticity difference in determining the final interface position. However, the overshoot of interface position near the con-fluent point increased with elasticity.

  • PDF

Micro-hole Fabrication of Glass Using Electro-chemical Discharge Method (전해 방전법을 이용한 유리 미세 구멍가공)

  • Lee, Wang-Hoon;Lee, Young-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • In this paper, we fabricated an apparatus of the electro-chemical discharge drilling for boring narrow through-hole into a glass. In the electrolyte, electro-chemical discharge creates high temperature condition by the electro-discharge energy. Therefore, glass are removed by the accelerated chemical reaction with glasses and chemicals in the high temperature condition. For optimization of the electro-chemical discharge drilling, the process condition was studied experimentally as a function of the electrolyte concentration, supply voltage and process time. The optimum condition was from DC25V to DC30V of applied voltage, 35 wt% NaOH solution.

Transport Behaviour of Electroactive Species in Ionic Compounds: A Focus on Li Diffusion through Transition Metal Oxide in Current Flowing Condition

  • Lee, Sung-Jai;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This article reviewed transport behaviours of electroactive species in ionic compounds, focusing on chemical diffusion of Li through the transition metal oxide in a current flowing condition. For this purpose, a distinction has been first briefly made between migration and diffusion with respect to current, driving force and charge of electroactive species considered. Then, the equations for chemical diffusion are derived theoretically in open-circuit and current flowing conditions. Finally, the experimental methods such as ac impedance spectroscopy and current (potential) transient techniques are described in details for characterising chemical diffusion. In addition, the role of the thermodynamic enhancement factor in chemical diffusion is discussed.

Evaluation Retention Performance of Phosphate-introduced Chemical Admixture Mortar in Extremly Hot Weather Condition (극서환경용 포스페이트 도입 화학혼화제 모르타르 특성 평가)

  • Ki, Jun-Do;Kim, Kwang-Ki;Kim, Jung-Jin;Park, Soon-Jeon;Kim, Jung-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.96-97
    • /
    • 2017
  • Performances such as retention, setting time and strength generation of mortar with phosphate-introduced chemical admixture, domestic and foreign admixtures are evaluated to find one that meets over 3 hours retention in extremly hot weather condition in this study.

  • PDF

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Optmization of Cutting Condition based on the Relationship between Tool Grade and Workpiece Material (2nd. Report) (피삭제와 공구재종의 상관관계에 근거한 절삭조건의 최적화(II))

  • 한동원;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.169-172
    • /
    • 1995
  • In optmizing cutting condition for face milling operation, tool wear is an important maching factor. For the purpose of establishing the relationship between various maching factor and tool wear, cutting tests have been performed. As a result, hardness and chemical composition of workpiece material, chemical compositition and grain size of cutting tool and cutting speed have been selected as machining factor. In addition, relationship between feed rate and workpiece hardness has been observed. Prior to utilizing cutting condition recommended by 'Machining Data Hardbook(MDH)' as a Knowledge base, an analysis for the validity has been provided. Based on this analysis, tool life criteria applied by MDH has been modifiied. Finaly, using MDH recommended data for neural network trainning, we can compensate the result form the trained neural network for optimizing cutting condition for some given workpice and cutting tool.

  • PDF

Procedure for improving dynamic operability of chemical processes

  • Kwon, Youngwoon;Chang, Tae-Suk;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.332-335
    • /
    • 1995
  • A simple and effective method for improving Euclidean norm condition number for chemical processing system is presented. The singular value sensitivities of Freudenberg et al. (1982) is used to estimate the behavior of singular values of process transfer function matrix when design parameter is changed, then the condition number can be calculated straightforwardly. The method requires explicit dependencies of each transfer function matrix elements on design parameters. These dependencies can be obtained either by symbolic differentiation in the form of explicit function of design parameters, or by numerical perturbation studies for units with large and complicated models. Gerschgorin-type lower bound for minimum singular value is introduced to detect the large divergencies near singular point due to linearity of sensitivities. The case studies are performed to show the efficiency of the proposed method.

  • PDF

Development of chemical conversion coating process for Mg-Al alloy and its anti-corrosion property (마그네슘-알루미늄 합금의 화성처리 공정 개발과 그 내식성 평가)

  • Kim, Seong-Jong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.265-266
    • /
    • 2006
  • The chemical conversion coating formed on magnesium alloy investigated for low cost and harmless in environment by using the colloidal silica as the main component. The film formed in 298 K is thick, the film, which was thought combination of Si-O, was formed. The film formed in 313 K is thinner than that in 298 K. The quantity of film formed at high temperature such as 333 K and 353 K is smaller than dissolved quantity. At the anodic polarization experiment, corrosion resistance in sealing by hot water after chemical conversion treatment in basic solution condition get worse than that in comparison with basic solution condition. In salt spray test, the ratio of black rust on specimen that did not conducted chemical conversion treatment was five times or more compared with those of chemical conversion treated specimen. The film thickness of chemical conversion coating produced by alkali treatment process is thinner than in comparison with that of specimen produced in basic chemical conversion treatment solution condition. It is thought, however, that it showed good corrosion resistance during salt spray test because the area of microcracks is small.

  • PDF