• Title/Summary/Keyword: Chemical compositions

Search Result 1,829, Processing Time 0.033 seconds

Effects of inorganic salts on biomass production, cell wall components, and bioethanol production in Nicotiana tabacum

  • Sim, Seon Jeong;Yong, Seong Hyeon;Kim, Hak Gon;Choi, Myung Suk;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • The development of bioenergy through biomass has gained importance due to the increasing rates of fossil fuel depletion. Biomass is important to increase the productivity of bioethanol, and production of biomass with high biomass productivity, low lignin content, and high cellulose content is also important in this regard. Inorganic salts are important in the cultivation of biomass crops for the production of biomass with desirable characteristics. In this study, the roles of various inorganic salts in biomass and bioethanol production were investigated using an in vitro tobacco culture system. The inorganic salts evaluated in this study showed dramatic effects on tobacco plant growth. For example, H2PO4 substantially improved plant growth and the root/shoot (R/S) ratio. The chemical compositions of tobacco plants grown in media after removal of various inorganic salts also showed significant differences; for example, lignin content was high after Mg2+ removal treatment and low after K+ treatment and H2PO4 removal treatment. On the other hand, NO3- and H2PO4 treatments yielded the highest cellulose content, while enzymatic hydrolysis yielded the highest glucose concentration ratio 24 h after NH4+ removal treatment. The ethanol productivity after H2PO4 removal treatment was 3.95% (w/v) 24 h after fermentation and 3.75% (w/v) after 36 h. These results can be used as the basis for producing high-quality biomass for future bioethanol production.

Raman spectroscopic analysis to detect olive oil mixtures in argan oil

  • Joshi, Rahul;Cho, Byoung-Kwan;Joshi, Ritu;Lohumi, Santosh;Faqeerzada, Mohammad Akbar;Amanah, Hanim Z;Lee, Jayoung;Mo, Changyeun;Lee, Hoonsoo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.183-194
    • /
    • 2019
  • Adulteration of argan oil with some other cheaper oils with similar chemical compositions has resulted in increasing demands for authenticity assurance and quality control. Fast and simple analytical techniques are thus needed for authenticity analysis of high-priced argan oil. Raman spectroscopy is a potent technique and has been extensively used for quality control and safety determination for food products In this study, Raman spectroscopy in combination with a net analyte signal (NAS)-based methodology, i.e., hybrid linear analysis method developed by Goicoechea and Olivieri in 1999 (HLA/GO), was used to predict the different concentrations of olive oil (0 - 20%) added to argan oil. Raman spectra of 90 samples were collected in a spectral range of $400-400cm^{-1}$, and calibration and validation sets were designed to evaluate the performance of the multivariate method. The results revealed a high coefficient of determination ($R^2$) value of 0.98 and a low root-mean-square error (RMSE) value of 0.41% for the calibration set, and an $R^2$ of 0.97 and RMSE of 0.36% for the validation set. Additionally, the figures of merit such as sensitivity, selectivity, limit of detection, and limit of quantification were used for further validation. The high $R^2$ and low RMSE values validate the detection ability and accuracy of the developed method and demonstrate its potential for quantitative determination of oil adulteration.

Chemical Compositions and Lead Isotopic Ratios of Bronze Spoons Excavated from Coastal Areas of Mado Island, Taean County (태안 마도해역 출수 청동숟가락의 성분조성과 납동위원소비)

  • Han, Woo Rim;Kim, So Jin;Hwang, Jin Ju
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.3
    • /
    • pp.4-11
    • /
    • 2016
  • This study compares eight bronze spoons in the Goryeo Dynasty and analyzes their components and lead isotopes in order to confirm the relationship between their production sites and excavation sites. Most of the excavated spoons have elliptical heads, and their handles are categorized into two types. Bronze spoons are made of binary Cu-Sn alloys, but Pb is not added. The same artifacts can have different trace elements depending on location, and the spoons had high Ag content. According to an analysis of their lead isotopic ratio, they were made with raw materials produced in Zone 3 of the South Korean galena map. If the data of the trace elements in the raw ores of the bronze is accumulated, it can be used to indicate the provenance of the artifacts.

Effect of Organic Solvent Extractives on Korean Softwoods Classification Using Near-infrared Spectroscopy

  • Yeon, Seungheon;Park, Se-Yeong;Kim, Jong-Hwa;Kim, Jong-Chan;Yang, Sang-Yun;Yeo, Hwanmyeong;Kwon, Ohkyung;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.509-518
    • /
    • 2019
  • This study analyzed the effect of organic solvent extractives on the classification of wood species via near-infrared spectroscopy (NIR). In our previous research, five species of Korean softwood were classified into three groups (i.e., Cryptomeria japonica (cedar)/Chamaecyparis obtuse (cypress), Pinus densiflora (red pine)/Pinus koraiensis (Korean pine), and Larix kaempferi (Larch)) using an NIR-based principal component analysis method. Similar tendencies of extractive distribution were observed among the three groups in that study. Therefore, in this study, we qualitatively analyzed extractives extracted by an organic solvent and analyzed the NIR spectra in terms of the extractives' chemical structure and band assignment to determine their effect in more detail. Cedar/cypress showed a similar NIR spectra patterns by removing the extractives at 1695, 1724, and 2291 nm. D-pinitol, which was detected in cedar, contributed to that wavelength. Red pine/Korean pine showed spectra changes at 1616, 1695, 1681, 1705, 1724, 1731, 1765, 1780, and 2300 nm. Diterpenoids and fatty acid, which have a carboxylic group and an aliphatic double bond, contributed to that wavelength. Larch showed a catechin peak in gas chromatography and mass spectroscopy analysis, but it exhibited very small NIR spectra changes. The aromatic bond in larch seemed to have low sensitivity because of the 1st overtone of the O-H bond of the sawdust cellulose. The three groups sorted via NIR spectroscopy in the previous research showed quite different compositions of extractives, in accordance with the NIR band assignment. Thus, organic solvent extractives are expected to affect the classification of wood species using NIR spectroscopy.

Antioxidant Compounds and Antioxidant Activities of Ethanolic Extracts from Brown Rice Cultivars (현미 품종별 에탄올 추출물의 항산화 성분 및 항산화 활성)

  • Kim, Hyun-Joo;Lee, Ji Hae;Lee, Byong Won;Lee, Yu Young;Lee, Byoung Kyu;Woo, Koan Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.6
    • /
    • pp.949-956
    • /
    • 2018
  • This study investigated chemical components, antioxidant compounds, and activity of brown rice cultivars, to select good cultivar to be used for processing of mixed-rice in the food industry. Proximate compositions, phytic acid, phenolic compounds, and antioxidant activity of brown rice were significantly different among cultivars. Moisture, crude ash, fat, protein, and carbohydrate contents of brown rice were 9.51~12.82, 1.05~1.93, 1.84~6.24, 5.90~9.60 and 71.75~80.34 g/100 g, respectively. Phytic acid content of brown rice cultivars was 7.39~0.87 mg/g. Total polyphenol content of Joeunheukmi and Geonganghongmi cultivars, were 615.25 and $311.14{\mu}g\;GAE/g$, total flavonoid content was 267.75 and $100.67{\mu}g\;CE/g$, respectively. DPPH radical scavenging activity of Geonganghongmi, Joeunheukmi and Hyeugkwang cultivars was 89.17, 87.94 and 43.17%, ABTS radical scavenging activity was 113.57, 113.34, and $93.53{\mu}mol\;TE/g$, and ferric reducing antioxidant potential was 951.67, 1,075.75, and $508.33{\mu}M/g$, respectively. As a result, phenolic compounds and antioxidant activities of pigmented brown rice were high, and it could be used as a functional material.

Acaricidal and antibacterial toxicities of Valeriana officinalis oils obtained by steam distillation extraction (수증기 증류 추출법에 의해 얻어진 미국산 길초근 정유의 살비효과 및 항균효과)

  • Choi, Seon-A;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.19-23
    • /
    • 2019
  • The chemical compositions of the essential oil of Valeriana officinalis roots obtained by steam distillation method were analyzed by GC-MS. The 16 constituents were identified in the V. officinalis oil, and the most abundant compounds were patchouli alcohol (18.69%) and ${\beta}$-gurjunene (15.26%). Acaricidal effects of the V. officinalis oil were evaluated against Tyrophagus putrescentiae, Haemaphysalis longicornis larva and H. longicornis nymph by contact bioassay. The $LD_{50}$ values against T. putrescentiae, H. longicornis larva and H. longicornis nymph were 28.01, 178.26 and $207.98{\mu}g/cm^2$, respectively. Agar disc diffusion bioassay showed the antibacterial activity of the V. officinalis oil against foodborne pathogens, especially L. monocytogenes. These results showed that the essential oil of V. officinalis roots derived from USA has a potential for development as acaricide and antimicrobial.

Syntheses and Properties of Side Chain Liquid Crystalline Polymers with Cholesteryl and Azobenzene Functional Groups (콜레스테릴기와 아조벤젠기를 갖는 곁사슬 액정고분자의 합성 및 성질)

  • Gu, Su-Jin;Cho, Kuk Young;Bang, Moon-Soo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.219-225
    • /
    • 2019
  • Side-chain liquid crystalline polymers with various compositions of azobenzene and cholesteryl functional groups as the mesogenic moiety were synthesized by direct polycondensation, and their properties were investigated. The inherent viscosity values of synthesized polymers were between 0.32 and 0.38 dL/g in 1,1,2,2-tetrachloroethane. All polymers except the SP-A10C0 polymer containing only the azobenzene group were amorphous or exhibited very low crystallinity due to the presence of bulky mesogenic side chains. All synthesized polymers exhibited enantiotropic liquid crystallinity; the SP-A10C0 polymer having only the azobenzene group exhibited a nematic phase, and all other polymers showed a cholesteric phase. In particular, it was found that when the content of cholesteryl groups in the side chain of the polymer increases, the liquid crystallinity decreases due to the bulkiness of cholesteryl groups.

Effect of the Growth Period on Bioethanol Production from the Branches of Woody Crops Cultivated in Short-rotation Coppices

  • Jo, Jong-Soo;Jung, Ji Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.360-370
    • /
    • 2019
  • Woody crops cultivated in short-rotation coppices are attractive sources of lignocellulosic materials for bioethanol production, since they are some of the most abundant renewable resources. In this study, we evaluated the effects of the growth period on bioethanol production using short-rotation woody crops (Populus nigra ${\times}$ Populus maxiwiczii, Populus euramericana, Populus alba ${\times}$ Populus glandulosa, and Salix alba). The carbohydrate contents of 3-year-old and 12-year-old short-rotation woody crop branches were 62.1-68.5% and 64.0-67.1%, respectively. The chemical compositions of 3-year-old and 12-year-old short-rotation woody crop branches did not vary significantly depending upon the growth period. However, the 3-year-old short-rotation woody crop branches (glucose conversion: 26-40%) were hydrolyzed more easily than their 12-year-old counterparts (glucose conversion: 19-24%). Furthermore, following the fermentation of enzymatic hydrolysates from the crop branch samples (by Saccharomyces cerevisiae KCTC 7296) to ethanol, the ethanol concentration of short rotation coppice woody crops was found to be higher in the 3-year-old branch samples (~ 0.18 g/g dry matter) than in the 12-year-old branch samples (~ 0.14 g/g dry matter). These results suggest that immature wood (3-year-old branches) from short-rotation woody crops could be a promising feedstock for bioethanol production.

The Quality of Commercial Salted and Fermented Anchovy Engraulis japonicas Sauces Produced in Korea (국내산 시판 멸치(Engraulis japonicas) 액젓의 품질평가)

  • Um, In-Seon;Seo, Jung-Kil;Kim, Hee-Dai;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.6
    • /
    • pp.667-672
    • /
    • 2018
  • We investigated the quality of 12 commercial salted and fermented anchovy Engraulis japonicas sauces by measuring their chemical compositions, bacteria concentrations, and biogenic amine contents. The sauces had a moisture content of 67.13-69.83% (mean: 68.17%), salinity of 20.00-25.84% (mean: 22.29%), pH of 5.14-6.28 (mean: 5.63), volatile basic nitrogen content of 119.12-273.37 mg/100 g (mean: 199.19 mg/100 g), total nitrogen content of 0.82-1.50% (mean: 1.30%) and amino nitrogen content of 550.17-1,086.62 mg/100 g (mean: 774.99 mg/100 g). The viable cell counts ranged from not detected to $1.6{\times}10^3CFU/mL$, and the number of biogenic amine-forming bacteria was very low or undetectable. The tested samples contained 372.32-2,111,61 mg/kg (mean 813.48 mg/kg) histamine, 29.62-144.29 mg/kg (mean 98.14 mg/kg) cadaverine, 87.89-530.84 mg/kg (mean 329.91 mg/kg) tryptamine, 20.89-127.17 mg/kg (mean 60.49 mg/kg) putrescine, and 13.08-109.91 mg/kg (mean 57.74 mg/kg) tyramine. Whereas no spermidine or spermine was detected in any sample. These results strongly suggest the necessary of monitoring the biogenic amine contents of commercial salted and fermented anchovy sauces carefully to ensure consumer health.

Roadside Aerosols Size Distribution Characteristics in Jeju City (제주시 도로변에서의 에어로졸의 입경별 분포 특성)

  • Lee, Ki-Ho;Kim, Su-Mi;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.30 no.9
    • /
    • pp.727-739
    • /
    • 2021
  • Measurements on mass size distribution of roadside aerosols were obtained in downtown Jeju City from July 2018 to May 2020 using an 8-stage cascade impactor sampler and the compositions of aerosols were analyzed. The mass size distribution of total aerosols was bimodal with aerosols existing in both the fine and coarse modes. The mass size distributions of Na+, Mg2+, Ca2+, Cl-, NH4+ and SO42- were unimodal, whereas that of K+ was bimodal. For NO3-, the size distribution in winter and spring was bimodal with the peaks in both fine and coarse modes, whereas for summer and autumn the distribution was unimodal with a peak in the coarse mode. NH4+ was found to co-exist with SO42- in the fine mode with an average molar ratio of [NH4+]/[SO42-] equal to 2.05. Good correlation was observed between NO3- and NH4+ in the fine mode particles in spring and winter. Based on the value of the marine enrichment factor for Cl-, Mg2+, K+, Ca2+ and SO42-, it may be inferred that a major part of the roadside aerosols in downtown Jeju City was largely contributed by terrigenous sources, although the influence of sea salt was normally present.