• 제목/요약/키워드: Chemical coagulation and sedimentation

검색결과 31건 처리시간 0.226초

물리, 화학적 처리방법에 의한 염색폐수의 색도제거에 관한 연구 (A Study on the Reduction of Color in Dye Wastewaters by Physico-chemical Processes)

  • 이준석;김민호;김영규
    • 한국환경보건학회지
    • /
    • 제19권3호
    • /
    • pp.29-35
    • /
    • 1993
  • This study was performed to obtain optimal conditions for reduction of color in dye wastewaters using coagulation-sedimentation processes with redox reactions. The reduction of color as well as organic matters variation was observed after coagulation-sedimentation processes using FeSO$_4$ $\cdot$ 7H$_2$O and NaOCl. Coagulation-redox reaction was done with the dose of Coagulant and oxidant at various pH values. Redox reaction was done through jar-mixing and aeration. The results of study were as follows: 1. In the coagulation-sedimentation processes using FeSO$_4$ $\cdot$ 7H$_2$O, color reduction was heigher at pH 3. With variance of dosage of FeSO$_4$ $\cdot$ 7H$_2$O, color reduction was higher at 250 mg/l. When coagulation-sedimentation using FeSO$_4$ $\cdot$ 7H$_2$O 250 mg/l was added at pH 3, the reduction of color, COD$_{Mn}$, and COD$_{Cr}$ showed 47.6%, 21.3% and 22.1%, respectively. 2. When NaOCI was added at level of 100 ppm in raw wastewater at pH 3, the reduction of color, COD$_{Mn}$, and COD$_{Cr}$ showed 30.2%, 5.5% and 6.2%, respectively. 3. After coagulation-sedimentation processes by addition of FeSO$_4$ $\cdot$ 7H$_2$O, when NaOCl was added at level of 250 mg/l in supernant, color reduction was 47.8% in aeration and 37.5% in jar-mixing. 4. Color reduction by aeration was higher than that by jar-mixing.

  • PDF

ε-polylysine biopolymer for coagulation of clay suspensions

  • Kwon, Yeong-Man;Im, Jooyoung;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제12권5호
    • /
    • pp.753-770
    • /
    • 2017
  • The coagulation or flocculation of cohesive clay suspensions is one of the most widely used treatment technologies for contaminated water. Flocculated clay can transport pollutants and nutrients in ground water. Coagulants are used to accelerate these mechanisms. However, existing coagulants (e.g., polyacrylamide, polyaluminum chloride) are known to have harmful effects in the environment and on human health. As an alternative, eco-friendly coagulant, this study suggests ${\varepsilon}-polylysine$, a cationic biopolymer fermented by Streptomyces. A series of sedimentation experiments for various ${\varepsilon}-polylysine$ concentrations were performed, and the efficiency of sedimentation with ${\varepsilon}-polylysine$ was estimated by microscopic observation and light absorbance measurements. Two types of sedimentation were observed in the experiments: accumulation sedimentation (at 0.15%, 0.20%, 0.25% ${\varepsilon}-polylysine$) and flocculation sedimentation (at 0%, 0.1%, 0.5%, 1.0%, 2.0% ${\varepsilon}-polylysine$). These sedimentation types occur as a result of the concentration of counter ions. Additionally, the performance of ${\varepsilon}-polylysine$ was compared with that of a previously used environmentally friendly coagulant, chitosan. The obtained results indicate that flocculation sedimentation is appropriate for contamination removal and that ${\varepsilon}-polylysine$ functions more efficiently for clay removal than chitosan. From the experiments and analysis, this paper finds that polylysine is an alternative eco-friendly coagulant for removing chemical contaminants in groundwater.

Recovery of ultrafine particles from Chemical-Mechanical Polishing wastewater discharged by the semiconductor industry

  • Tu, Chia-Wei;Wen, Shaw-Bing;Dahtong Ray;Shen, Yun-Hwei
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.715-718
    • /
    • 2001
  • This study uses traditional alum coagulation and sedimentation process to treat CMP wastewater from cleaning after polishing. The primary goal is to successfully recycle both solid fines and water for semiconductor manufacturing. Results indicated that CMP wastewater may be successfully treated to recover clean water and fine particles by alum coagulation. The optimum operating conditions for coagulation are as fellowing: alum dosage of 10 ppm, pH at 5, rapid mixing speed at 800 rpm, 5 min rapid mixing time, and long slow mixing time. The treated water with low turbidity and an average residual aluminum ion concentration of 0.23 ppm may be considered for reuse. The settled sludge after alum coagulation contains mainly SiO$_2$particle with a minor content of aluminum (1.7 wt%) may be considered as raw materials for glass and ceramic industry.

  • PDF

The Condition of Optimum Coagulation for Recycling Water from CMP Slurry

  • Seongho Hong;Oh, Suck-Hwan
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.415-420
    • /
    • 2001
  • Water usage in the semiconductor industries is dramatically increased by not only using bigger wafer from 8 inches to 12 inches but also by adapting new process such as Chemical Mechanical Planarization (CMP) process invented by IBM in late '80. However, The document published by International Semiconductor Association suggests the decreasing ultra pure water (UPW) use from 22 gallon/in$^2$in 1997 to 5 gallon/in$^2$ in 2012. The criteria will possibly used as exporting obstacle in the future. Generally, Solid content of CMP slurry is about 15wt%. The slurry is diluted with UPW before fed to a CMP process. When the slurry is discharged from the process as waste, it contains 0.1~0.6wt% of solid content and 9~10 at pH. The CMP waste slurry is discharged to stream with minimum treatment. In this study, to find optimum condition of coagulation for water recovery from the waste CMP slurry various condition of coagulation were examined. After coagulation far 0.1 wt% solid content of waste CMP slurry, the sludge volume was 10~15% after 30 min of sedimentation time. For the 0.5 wt%, sludge volume was 50~55% after one hour of sedimentation time. For more than 80% of water recycling, the solid content should be in the range of 0.1 to 0.2wr%. Based on the result of the turbidity removal, the Zeta Potential and the analysis of heavy metals, the optimum condition for 0.1 wr% of waste CMP slurry was with 20 mg/L of PACI at 4 to 5 of pH. The result showed that the optimum conditions fer the 0.1 wt% waste CMP slurry were 100mg/L of Alum at 4~5 of pH, 100 mg/L of MgCI$_2$at pH 10 to 11 and 100 mg/L of Ca(OH)$_2$at pH 9 to 11, respectively.

  • PDF

응집침전에 의한 제철공장 냉각수질향상 (Improvement of Cooling Water Quality by Coagulation and Sedimentation in Steel Mill)

  • 조관형;우달식;황병기;이선주;박덕원
    • 한국환경보건학회지
    • /
    • 제35권5호
    • /
    • pp.411-416
    • /
    • 2009
  • This study was initiated to improve the cooling water quality by chemical coagulation and sedimentation in steel mills. Due to the inefficient flocculation in the settling tanks of blast furnace cooling water systems, the solid particles in the cooling water overflow accumulate and clog the cooling system. To protect the cooling water system from such fouling, proper flocculants must be continuously used. Laboratory tests were performed for the indirect cooling water system of a plate mill. The batch test in the gas scrubbing cooling water system of a blast furnace showed that the proposed coagulant was more effective for the improvement of coagulation and sedimentation than the existing one. During the tests, cationic flocculants were more effective than use of only an anionic flocculant. The suggested combination of anionic and cationic flocculants can probably improve the turbidity removal efficiency of the cooling water. Proper control of the overflow rate by the designed residence time would help turbidity removal efficiency in the settling tank. In addition, the settling can be enhanced by adopting rapid and slow mixing alternatively. Scale problems in blast furnace cooling water system were reduced to some extent by efficient settling.

생활하수내 인 제거를 위한 화학적 침전의 최적화 (Optimization of chemical precipitation for phosphate removal from domestic wastewater)

  • 이선경;박문식;연승재;박동희
    • 상하수도학회지
    • /
    • 제30권6호
    • /
    • pp.663-671
    • /
    • 2016
  • Coagulation/precipitation process has been widely used for the removal of phosphate within domestic wastewater. Although Fe and Al are typical coagulants used for phosphate removal, these have some shortages such as color problem and low sedimentation velocity. In this study, both Fe and Al were used to overcome the shortages caused by using single one, and anionic polymer coagulant was additionally used to enhance sedimentation velocity of the precipitate formed. Batch experiments using a jar test were conducted with real wastewater, which was an effluent of the second sedimentation tank in domestic wastewater treatment plant. Response Surface Methodology was used to examine the responsibility of each parameter on phosphate removal as well as to optimize the dosage of the three coagulants. Economic analysis was also done on the basis of selling prices of the coagulants in the field. Phosphate removal efficiency of Fe(III) was 30% higher than those of Fe(II). Considering chemical price, optimum dosage for achieving residual phosphate concentration below 0.2 mg/L were determined to be 18.14 mg/L of Fe(III), 2.60 mg/L of Al, and 1.64 mg/L of polymer coagulant.

새로운 피혁폐수 처리제에 관한 연구; I. 새로운 유기 응결제의 개발 (A study on new treatment chemical for leather wastewater; I. Development of new organic coagulant)

  • 정맹준;이철재;한성욱
    • 한국산업융합학회 논문집
    • /
    • 제9권4호
    • /
    • pp.323-330
    • /
    • 2006
  • As the interest in environmental pollution resulting from recent industrial development is converging, wastewater treatment problem of dying processing is one of important pending issue. Usually, flow mediation earth and settling pond etc. of processing plant to handle water or wastewater. Mediation is the wastewater that flowed past settling pond than material of heavy particles, water weight colloid particles that big solids are removed but are suspensibility material settlement exclusion impossible. So, we need flocculation and coagulation action to remove materials from this colloid state. For flocculation and coagulation action chemical agents to add back, addition of chemical agents forms floc of could settle size. That is, shorten the sedimentation time and quality of processing water because promoting sedimentation doing to do fines or suspended solids and colloid can materials large size and also, flocculation to annex efficiency of filtration augment. Therefore, I executed this research to prove that improving organic matter and chromaticity of treated water of processing epochally using organic coagulant informed positive ion co-polymerization superior in color wastewater through this research.

  • PDF

일체형 완속교반침전조와 섬유여과기를 이용한 반류수 인 제어시스템의 경제성 연구 (Economic Assesment of Phosphorus Control System for Reject Water using a Integral Type Slow Mixing/Sedimentation Tank and Fiber Filter)

  • 김미란;김정숙;장정국
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.822-829
    • /
    • 2017
  • 하수처리장에서의 총 인 저감을 위한 방안으로 완속교반/침전 섬유여과시스템을 적용하여 하수 방류수와 반류수를 제어하는 방법에 대해 비교 검토하였다. 물질수지를 통해 인의 최종 농도를 강화된 기준치인 0.2 mg/L로 낮추기 위해서는 약 92.4 kg T-P/day를 제거해야 되는 것으로 분석되었으며, 이를 위한 총 인 제거효율은 하수 방류수는 96%, 반류수(탈수여액)은 69.2% 이상이 되어야 한다. 총 인 제거 목표치를 달성하기 위한 시스템 운영비용을 검토하였으며, 하수방류수를 처리하는 것보다 유량은 적으나 고농도의 인을 함유한 반류수를 처리하는 것이 약품비용은 약 1/2.4, 전력비용은 약 1/120 정도로 절감되는 것으로 나타났다. 한편 반류수 처리를 위해 개발시스템인 완속교반/침전 섬유여과시스템과 일반적인 응집침전시스템을 적용하는 경우에 대한 경제성을 검토하였으며, 완속교반/침전 섬유여과시스템이 일반적인 응집침전시스템에 비해 설치면적이 약 1/7로 작고 약품소요량 및 전력비를 포함한 연간운전비용은 약 1/1.7 소요되어 개발시스템이 보다 경제성이 있는 것으로 평가되었다.

하수의 화학적 응집조건 및 응집제별 응집효율 분석 (Chemical Coagulation Conditions and Efficiency of Sewage with Al(III) and Fe(III) Coagulants)

  • 박준규;전동걸;박노백;전항배
    • 상하수도학회지
    • /
    • 제24권4호
    • /
    • pp.463-474
    • /
    • 2010
  • In this study, chemical coagulation conditions for treating combined sewer overflow(CSO) occurred during rainy season were evaluated by jar tests with aluminum sulfate[$Al_2(SO_4)_3{\cdot}17H_2O$] and ferric chloride[$FeCl_3{\cdot}6H_2O$]. The raw domestic sewage sampled from the primary sedimentation tank at a local sewage treatment plant was filtered through $150{\mu}m$ sieve before using. Point of zero charge(PZC) for various dose of aluminum sulfate occurred at pH 5.8-6.5, while for ferric chloride occurred at pH 5.3-6.0 in term of streaming current(SC) values. Charge neutralization ability of aluminum sulfate was bigger than that of ferric chloride. Optimum pH and dose of aluminum sulfate and ferric chloride were 6.2, 0.438mM and 5.8, 0.925mM, respectively. Removal efficiencies of TCOD, turbidity, SS and TP were 75, 97, 95, 96% with aluminum sulfate and 74, 96, 98, 99% with ferric chloride at their optimum coagulation conditions. More efficient removal of SS, TP and small particles was possible with ferric chloride at optimum coagulation conditions. Both SC values and COD removal started to increase where soluble phosphorus was completely removed.

새로운 피혁폐수 처리제에 관한 연구; III. 무기 응집제의 COD 효율 (A study on New Treatment Chemical for Leather Wastewater; III. COD Efficiency of Inorganic Coagulant)

  • 박정회;이철재;최현국;정맹준
    • 한국산업융합학회 논문집
    • /
    • 제11권3호
    • /
    • pp.107-111
    • /
    • 2008
  • Usually, flow mediation earth and settling pond etc. of processing plant to handle water or wastewater. Mediation is the wastewater that flowed past settling pond than material of heavy particles, water weight colloid particles that big solids are removed but are suspensibility material settlement exclusion impossible. So, we need flocculation and coagulation action to remove materials from this colloid state. Flocculation and coagulation by addition of chemical agents forms floc settle size. That is, shorten the sedimentation time and quality of processing water because promoting sedimentation doing to do fines or suspended solids and colloid can materials large size and also, flocculation to annex efficiency of filtration augment. Therefore, I executed this research to prove that COD efficiency for wastewater by using inorganic coagulant.

  • PDF