• Title/Summary/Keyword: Chemical change

Search Result 4,377, Processing Time 0.031 seconds

Bilinear Model Predictive Control for Grade Change Operations in Paper Mills (지종교체 공정의 Bilinear 모델 예측제어)

  • Choo, Yeon-Uk;Yeo, Yeong-Koo;Kang, Hong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.1 s.109
    • /
    • pp.61-66
    • /
    • 2005
  • The grade change operations In paper mills exhibit inherent nonlinear dynamic characteristics. For this reason, the conventional model predictive control techniques based on linear process models are not adequate for the grade change operations. In this paper, a bilinear model for the nonlinear grade change processes was presented first and optimal input variables were calculated by using one-step-ahead predictive control method. Numerical simulations showed that the control performance lied within acceptable range and that the bilinear model predictive control scheme was highly promising control strategy for the grade change operations.

Performance and Economic Analysis of Natural Gas/Syngas Fueled 100 MWth Chemical-Looping Combustion Combined Cycle Plant (천연가스/합성가스 이용 100 MWth 매체순환연소 복합발전 플랜트의 성능 및 경제성 평가)

  • Park, Young Cheol;Lee, Tai-yong;Park, Jaehyeon;Ryu, Ho-Jung
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • In this study, performance and economic analysis of natural gas/syngas fueled 100 MWth chemical-looping combustion (CLC) combined cycle plant were performed. Net efficiency of both cases was 53~54%, corresponding to previous research. We used Chemical Engineering Plant Cost Index and Guthrie method to evaluate plant cost. For syngas fueled CLC combined cycle plant, the plant cost was higher since lower heating value(LHV) of syngas was lower than that of natural gas and cost of electricity(COE) was also higher since the cost of syngas was higher than that of natural gas. By sensitivity analysis, it was shown that the cost of syngas should be less than 5.3 $/GJ in order to make COE lower than 5.8 ¢/kWh which was COE of natural gas fueled CLC combined cycle plant.

Effect of HPAM on Calcium Carbonate Crystallization

  • Jing, Guolin;Tang, Shan;Li, Xiaoxiao
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.365-369
    • /
    • 2013
  • With the wide application of ASP (alkaline-surfactant-polymer) flooding, the scaling becomes more and more serious, which is harmful to the oilfield and environment. In order to investigate the effects of HPAM on calcium carbonate crystallization, the crystallization behaviors of $CaCO_3$ in HPAM (Hydrolyzed polyacrylamide) solutions were studied and the composition and morphology of $CaCO_3$ crystal were investigated in different concentrations of polyacrylamide solutions. The crystal forms and morphologies of $CaCO_3$ were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that the crystallization of $CaCO_3$ is strongly influenced by the HPAM. The paper analyzed the internal cause, and the results show: The reasons leading to the change of morphology are carboxyl groups in polyacrylamide molecule and $Ca^{2+}$ in solution form chelates by coordination bond. And the chelates are adsorbed on the calcium hydroxide surfaces of solid-liquid interfaces so as to change the formation rate of calcium carbonate crystal nucleus. The research provides a reliable basis for the mechanism research of the scaling problem in the oil extraction process of ASP flooding and the adoption of scale inhibition and scale inhibitor.

Effects of Heat Treatment on the Nutritional Quality of Milk III. Effect of Heat Treatment on Killing Pathogens in Milk (우유의 열처리가 우유품질과 영양가에 미치는 영향: III. 우유 열처리에 의한 병원균 사멸효과)

  • Moon, Yong-II;Jung, Ji Yun;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2017
  • A small amount of milk is sold as 'untreated' or raw in the US; the two most commonly used heat-treatments for milk sold in retail markets are pasteurization (LTLT, low-temperature long time; HTST, high-temperature short time) and sterilization (UHT, ultra-high temperature). These treatments extend the shelf life of milk. The main purpose of heat treatment is to reduce pathogenic and perishable microbial populations, inactivate enzymes, and minimize chemical reactions and physical changes. Milk UHT processing combined with aseptic packaging has been introduced to produce shelf-stable products with less chemical damage than sterile milk in containers. Two basic principles of UHT treatment distinguish this method from in-container sterilization. First, for the same germicidal effect, HTST treatments (as in UHT) use less chemicals than cold-long treatment (as in in-container sterilization). This is because Q10, the relative change in the reaction rate with a temperature change of $10^{\circ}C$, is lower than the chemical change during bacterial killing. Based on Q10 values of 3 and 10, the chemical change at $145^{\circ}C$ for the same germicidal effect is only 2.7% at $115^{\circ}C$. The second principle is that the need to inactivate thermophilic bacterial spores (Bacillus cereus and Clostridium perfringens, etc.) determines the minimum time and temperature, while determining the maximum time and temperature at which undesirable chemical changes such as undesirable flavors, color changes, and vitamin breakdown should be minimized.

Analysis of Color0Difference and Physical Property of Anti-Corrosion Coatings Used in Concrete Tank (콘크리트 수조 구조물에 사용하는 방식코팅재의 화학수 침지에 따른 색차 변화와 물리적 성질의 관계분석 기초 연구 -에폭시 수지계 도료를 중심으로-)

  • Seo, Hyun-Jae;Kim, Dong-Bum;Kim, Yun-Ho;Choi, Sung-Min;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.77-81
    • /
    • 2010
  • This study deals with the analysis of color-difference and physical property of anti-corrosion coatings using at inside of concrete tank for drinking water. Because anti-corrosion coatings are effected by chemical attack, color and physical property are changed. So in this study when epoxy resin coatings of 3 types were received chemical attack by Cl- and NaOH, we present the co-relationship between color-difference and bond strength. For this study, we used the colorimetry, which can measure the degree of color difference on surface of materials. As the results, in case of Cl-, color change is appeared, bond strength also is decreased. From this experiment, we could know that color change due to chemical aging has the deep relationship with physical performance(bond strength) materials. further researches are needed.

  • PDF

Physicochemical Analysis according to Temperature Changes of Iopamidol and Ioversol Formulation Contrast Agents (Iopamidol과 Ioversol 제제 조영제의 온도변화에 따른 물리화학적 분석)

  • Han, Beom-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.273-280
    • /
    • 2020
  • In this study, the P contrast agent of Iopamidol, which is a nonionic iodide contrast agent most commonly used as a vascular contrast agent in medical institutions, and the O contrast agent of Ioversol, were studied. The physicochemical changes according to the temperature change were compared and analyzed using the Bruker Avance 500MHz Nuclear Magnetic Resonance Spectrometer owned by the Korea Basic Science Institute (KBSI). There was no physical or chemical change in the O contrast medium of Ioversol formulation in temperature change. However, in the P contrast agent of Iopamidol, a doublet peak began to appear in the 1.1 ppm region of the sample at 60℃, and the doublet peak was clearly observed in the sample at 80℃. As a result of this study, 1H-NMR analysis revealed that the P contrast agent of the Iopamidol formulation was dissociated from chemical bonds as it rose to a high temperature of 60℃ or higher, resulting in the formation of foreign substances. It was evaluated that the O contrast agent of Ioversol formulation had physico-chemical stability than the P contrast agent of Iopamidol formulation. As shown in this study, it is necessary to analyze the physical and chemical changes of contrast agents according to various environmental factors.

Study on the Morphology Evolution of PS/HDPE Blend During Uniaxial Elongational Flow (일축신장흐름에서의 PS/HDPE Blend의 모폴로지 변화에 관한 연구)

  • Hong, Jung-Sook;Son, Jung-Wu;Lee, Seung-Jae;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2001.06a
    • /
    • pp.11-14
    • /
    • 2001
  • Our study have aimed to identify the deformation and breakup mechanism of minor phase in polymer blends under uniaxial enlongational flow. Experimentally, we measured the transient elongational viscosity of PS/HDPE blends using the uniaxial elongational rheometer at two temperatures. And we observed the evolution of blend morphology with elongation time. Morphological change was observed by quenching the specimen after deformation. If the viscosity variation of PS was compared with that of HDPE at each temperature, PS showed larger temperature dependence than HDPE. At 155$^{\circ}C$, the dispersed phase of larger size were easily affected by affine deformation. The initial spherical shape changed to flat ellipsoid at first, then flat ellipsoid to bulbous shape, and bulbous to thin thread and its satellites. But dispersed phase of smaller size showed the change from sphere to ellipsoid. At 175$^{\circ}C$, the dispersed phase were mostly deformed from spherical shape to ellipsoid. As a result, the morphological change of dispersed phase in elongational deformation is affected by chain flexibility and viscosity ratio. We need to further study to make sure the mechanism of elongation of viscoelastic polymer blends.

  • PDF

Dimensional Change of Melamine Sheet Laminated MDF Flooring by Heating (멜라민시트 적층 MDF 마루판재의 가열에 의한 치수변화)

  • Min, Ill-Hong;Kim, Eui-Sik;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.32-39
    • /
    • 1996
  • The overall purpose of this study was to investigate the dimensional changes of melamine sheet laminated medium density fiberboard(MDF) floorings by sub-heating system(Ondol). This study was also conducted to improve the properties of melamine sheet laminated MDF floorings. The effects of density, resin content, manufacturing speed of MDF and types of melamine sheet on dimensional and weight changes of floorings were investigated. The results were as followings. 1. Dimensional and weight change of melamine sheet laminated MDF flooring by heating decreased with decreasing the density of MDF. 2. Dimensional and weight change of melamine sheet laminated MDF flooring by heating decreased with increasing the resin content of MDF. 3. Dimensional and weight change of melamine sheet laminated MDF flooring by heating decreased with decreasing the manufacturing speed of MDF. 4. Dimensional change of melamine sheet laminated MDF flooring in width direction by heating was doubled than that in machine direction. 5. Dimensional change and curling of high pressure melamine laminate(HPM) laminated MDF flooring by heating was less than those of low pressure melamine laminate(LPL) flooring. 6. Weight loss of melamine sheet laminated MDF flooring by heating has linear relationship with shrinkage.

  • PDF

Change in Water Contact Angle of Carbon Contaminated TiO2 Surfaces by High-energy Electron Beam

  • Kim, Kwang-Dae;Tai, Wei Sheng;Kim, Young-Dok;Cho, Sang-Jin;Bae, In-Seob;Boo, Jin-Hyo;Lee, Byung-Cheol;Yang, Ki-Ho;Pack, Ok-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1067-1070
    • /
    • 2009
  • We studied change in water contact angle on $TiO_2$ surfaces upon high-energy electron-beam treatment. Depending on conditions of e-beam exposures, surface OH-content could be increased or decreased. In contrast, water contact angle continuously decreased with increasing e-beam exposure and energy, i.e. change in the water contact angle cannot be rationalized in terms of the overall change in the surfacestructure of carbon-contaminated $TiO_2$. In the C 1s spectra, we found that the C-O and C=O contents gradually increased with increasing e-beam energy, suggesting that the change in the surface structure of carbon layers can be important for understanding of the wettability change. Our results imply that the degree of oxidation of carbon impurity layers on oxide surfaces should be considered, in order to fully understand the change in the oxide surface wettability.

Holographic Grating by Means of Polymer Liquid Crystals

  • Ikeda, Tomiki;Yoneyama, Satoshi;Yamamoto, Takahiro;Hasegawa, Makoto
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.6-12
    • /
    • 2001
  • Formation of intensity gratings was studied with two s-polarized (s+s) configuration in polymer liquid crystals (PLCs) containing a photochromic moiety (azobenzene) and a mesogenic unit (tolane, T-AB; cyanobiphenyl, CB-AB) by photoinduced alignment of PLCs. Remarkable differences were observed between the two PLCs. T-AB showed a faster response to the change in the diffraction intensity than CB-AB. In T-AB, alignment change took place faster than that of CB-AB. By introducing the tolane unit at the side chain, we obtained a diffraction efficiency of 30 % in the Raman-Nath regime

  • PDF