Performance and Economic Analysis of Natural Gas/Syngas Fueled 100 MWth Chemical-Looping Combustion Combined Cycle Plant

천연가스/합성가스 이용 100 MWth 매체순환연소 복합발전 플랜트의 성능 및 경제성 평가

  • Park, Young Cheol (Climate Change Technology Research Division, Korea Institute of Energy Research) ;
  • Lee, Tai-yong (Department of Chemical Engineering, Hongik University) ;
  • Park, Jaehyeon (Climate Change Technology Research Division, Korea Institute of Energy Research) ;
  • Ryu, Ho-Jung (Climate Change Technology Research Division, Korea Institute of Energy Research)
  • 박영철 (한국에너지기술연구원 기후변화기술연구본부) ;
  • 이태용 (홍익대학교 화학공학과) ;
  • 박재현 (한국에너지기술연구원 기후변화기술연구본부) ;
  • 류호정 (한국에너지기술연구원 기후변화기술연구본부)
  • Received : 2008.12.03
  • Accepted : 2009.01.23
  • Published : 2009.02.28

Abstract

In this study, performance and economic analysis of natural gas/syngas fueled 100 MWth chemical-looping combustion (CLC) combined cycle plant were performed. Net efficiency of both cases was 53~54%, corresponding to previous research. We used Chemical Engineering Plant Cost Index and Guthrie method to evaluate plant cost. For syngas fueled CLC combined cycle plant, the plant cost was higher since lower heating value(LHV) of syngas was lower than that of natural gas and cost of electricity(COE) was also higher since the cost of syngas was higher than that of natural gas. By sensitivity analysis, it was shown that the cost of syngas should be less than 5.3 $/GJ in order to make COE lower than 5.8 ¢/kWh which was COE of natural gas fueled CLC combined cycle plant.

본 연구에서는 상용모사기를 이용하여 100 MWth 매체순환연소(CLC) 복합발전 플랜트의 성능 및 경제성 평가를 수행하였다. 원료로는 천연가스와 합성가스를 고려하였으며 원료에 따른 성능 및 발전단가를 비교, 분석하였다. 천연가스와 합성가스를 사용하는 경우 모두 발전 효율은 53~54% 수준으로 평가되었으며 이는 기존 연구와 부합하는 결과임을 확인하였다. 경제성 분석을 위해서 Chemical Engineering Plant Cost Index와 Guthrie 방법을 사용하여 장치비를 산정하였으며 합성가스의 저위발열량이 천연가스보다 낮기 때문에 장치비가 다소 높은 것을 확인하였다. 연료의 종류에 따른 발전단가 계산 결과 합성가스의 가격이 5.3 $/GJ 정도 되는 경우에 천연가스를 이용하는 경우의 발전단가인 5.8 ¢/kWh보다 낮아지는 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. Ryu, H. J., "CO2-NOx Free Chemical- Looping Combustion Technology,"KOSEN report, http://www.kosen21.org(2003)
  2. Akai, M., Kagajo, T. and Inoue, M., "Performance Evaluation of Fossil Power Plant with CO2 Recovery and Sequestering System," Energy Convers. Mgmt, 36(6), 801-804(1995) https://doi.org/10.1016/0196-8904(95)00125-W
  3. Kimura, N., Omata, K., Kiga, T., Takano, S. and Shikisma, S., "The Characteristics of Pulverized Coal Combustion in $O_2/CO_2$ Mixture for $CO_2$ Recovery," Energy Convers. Mgmt., 36(6), 805-808(1995) https://doi.org/10.1016/0196-8904(95)00126-X
  4. IEA Greenhouse Gas R&D Programme Report, "Greenhouse Gas Emissions from Power Stations," (2000), available on http://www. ieagreen.org.uk/sr1p.htm
  5. IEA Greenhouse Gas R&D Programme Report, 'Carbon Dioxide Capture from the Power Stations,' (2000), available on http:// www.ieagreen.org.uk/sr2p.htm
  6. Wolf, J., Anheden, M. and Yan, J., "Comparison of Nickel- and Iron-based Oxygen Carriers in Chemical-Looping Combustion for $CO_2$ Capture in Power Generation," Fuel, 84(7), 993-1006(2005) https://doi.org/10.1016/j.fuel.2004.12.016
  7. Ishida, M. and Jin, H., "A New Advanced Power-Generation System Using Chemical-Looping Combustion," Energy, 19(4), 415-422(1994) https://doi.org/10.1016/0360-5442(94)90120-1
  8. Ryu, H. J., Jin, G. T., Jo, S. H. and Bae, D. H., 'Comparison of Operating Conditions for Natural Gas Combustion and Syngas Combustion in a 50kWth Chemical-Looping Combustor,' Theories and Applications Chem. Eng., 12(2), 259(2006)
  9. Siriwardane, R., Richards, G., Simonyi, T. and Tian, H., 'Chemical- Looping Combustion of Coal with Metal Oxide Oxygen Carriers,' 25th International Pittsburgh Coal Conference, September, Pittsburgh(2008)
  10. Ryu, H. J., Yi, C. K., Shun, D. and Park, M. H., 'Operating Experience of the Second Generation Chemical-Looping Combustor,' 7th International Symposium on High Temperature Air Combustion and Gasification, January, Phuket(2008)
  11. Naqvi, R., "Analysis of Natural Gas-Fired Power Cycles with Chemical Looping Combustion for $CO_2$ Capture," Ph. D. Dissertation, Norwegian University of Science and Technology, Trondheim(2006)
  12. Biegler, L. T., Grossmann, I. E. and Westerberg, A. W., Systematic Methods of Chemical Process Design, 1st ed., Prentice-Hall, Upper Saddle River, NJ(1997)
  13. Ryu, H. J. and Jin, G. T., 'Conceptual Design of 50kW thermal Chemical-Looping Combustor and Analysis of Variables,' Energy Engg. J., 12(4), 289-301(2003)
  14. Consonni, S., Lozza, G., Pelliccia, G., Rossini, S. and Saviano, F., "Chemical-Looping Combustion for Combined Cycles with $CO_2$ Capture," Journal of Engineering for Gas Turbines and Power, 128(3), 525-534(2006) https://doi.org/10.1115/1.1850501
  15. Chiesa, P. and Consonni, S., "Natural Gas Fired Combined Cycles with Low CO2 Emissions," Journal of Engineering for Gas Turbines and Power, 122(3), 429-436(2000) https://doi.org/10.1115/1.1287496
  16. Lyngfelt, A., Kronberger, B., Adanez, J., Morin, J.-X. and Hurst, P., 'The Grace Project: Development of Oxygen Carrier Particles for Chemical-Looping Combustion. Design and Operation of 10 kW CLC,' 7th International Conference on Greenhouse Gas Control Technologies, September, Vancouver(2005)
  17. Spath, P., Aden, A., Eggeman, T., Ringer, M., Wallace, B. and Jechura, J., "Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly- Heated Gasifier," Technical Report, May, NREL/TP-510-37408(2005)