Browse > Article
http://dx.doi.org/10.5012/bkcs.2009.30.5.1067

Change in Water Contact Angle of Carbon Contaminated TiO2 Surfaces by High-energy Electron Beam  

Kim, Kwang-Dae (Department of Chemistry, Sungkyunkwan University)
Tai, Wei Sheng (Department of Chemistry, Sungkyunkwan University)
Kim, Young-Dok (Department of Chemistry, Sungkyunkwan University)
Cho, Sang-Jin (Department of Chemistry, Sungkyunkwan University)
Bae, In-Seob (Department of Chemistry, Sungkyunkwan University)
Boo, Jin-Hyo (Department of Chemistry, Sungkyunkwan University)
Lee, Byung-Cheol (Quantum Optics Research Division, Korea Atomic Energy Research Institute)
Yang, Ki-Ho (Quantum Optics Research Division, Korea Atomic Energy Research Institute)
Pack, Ok-Kyung (Quantum Optics Research Division, Korea Atomic Energy Research Institute)
Publication Information
Abstract
We studied change in water contact angle on $TiO_2$ surfaces upon high-energy electron-beam treatment. Depending on conditions of e-beam exposures, surface OH-content could be increased or decreased. In contrast, water contact angle continuously decreased with increasing e-beam exposure and energy, i.e. change in the water contact angle cannot be rationalized in terms of the overall change in the surfacestructure of carbon-contaminated $TiO_2$. In the C 1s spectra, we found that the C-O and C=O contents gradually increased with increasing e-beam energy, suggesting that the change in the surface structure of carbon layers can be important for understanding of the wettability change. Our results imply that the degree of oxidation of carbon impurity layers on oxide surfaces should be considered, in order to fully understand the change in the oxide surface wettability.
Keywords
Electron beam; $TiO_{2}$; Water contact angle;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Kim, Y. D.; Stultz, J.; Goodman, D. W. Langmuir 2002, 18, 3999   DOI   ScienceOn
2 Feng, X.; Feng, L.; Jin, M.; Zhai, J.; Jiang, L.; Zhu, D. J. Am. Chem. Soc. 2004, 126, 62   DOI   ScienceOn
3 Fujishima, A.; Hashimoto, K.; Watanabe, T. TiO2 Photocatalysts, Fundamentals and Applications; BKC Inc.: Tokyo, 1999; pp 66-77
4 Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Nature 1997, 388, 4310432   DOI   ScienceOn
5 Mills, A.; Crow, M. J. Photoenergy 2008, 470670   DOI
6 Irie, H.; Tsuji, K.-I.; Hashimoto, K. Phys. Chem. Chem. Phys. 2008, 10, 3072   DOI   ScienceOn
7 Feng, X.; Zhai, J.; Jiang, L. Angew. Chem. Int. Ed. 2005, 44, 5115   DOI   ScienceOn
8 Irie, H.; Ping, T. S.; Shibata, T.; Hashimoto, K. Electrochem. Solid-State Lett. 2008, 8, D-23-D25
9 Hwang, Y. K.; Patil, K. R.; Kim, H.-K.; Sathaye, S. D.; Hwang, J.-S.; Park, S.-E.; Chang, J.-S. Bull. Kor. Chem. Soc. 2005, 26, 1515   DOI   ScienceOn
10 Shibata, T.; Sakai, N.; Fukuda, K.; Ebina, Y.; Sasaki, T. Phys. Chem. Chem. Phys. 2007, 9, 2413   DOI   ScienceOn
11 Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988   DOI
12 Gan, W. Y.; Lam, S. W.; Chiang, K.; Amal, R.; Zhao, H.; Brungs, M. P. J. Mater. Chem. 2007, 17, 952   DOI   ScienceOn
13 Ertl, G.; Küppers, J. Low Energy Electrons and Surface Chemistry; VCH Verlagsgesellschagft: Weinheim, 1985; p 76
14 Fleming, L.; Fulton, C. C.; Lucovsky, G.; Rowe, J. E.; Ulrich, M. D.; Luning, J. J. Appl. Phys. 2007, 102, 033707   DOI   ScienceOn
15 Chen, X.; Burda, C. J. Am. Chem. Soc. 2009, 130, 5018-1019
16 Wang, L.-Q.; Baer, D. R.; Engelhard, M. H.; Shultz, A. N. Surf. Sci. 1995, 344, 237   DOI   ScienceOn
17 Cho, S. J.; Boo, J.-H. manuscript in preparation
18 Henderson, M. A. Langmuir 1996, 12, 5093   DOI   ScienceOn
19 Moulder, J. F.; Stickle, W. F.; Sobol P. E.; Bomben, K. D. In Handbook of X-ray Photoelectron Spectroscpy; Chastain, J.; King, R. C. Jr., Eds.; Physical Electronics, Inc.: Minnesota, 1995
20 de la Puente, G.; Pis, J. J.; Menedez, J. A.; Grange, P. J. Anal. Appl. Pyrol. 1997, 43 125   DOI   ScienceOn