• Title/Summary/Keyword: Chemical attack

Search Result 358, Processing Time 0.031 seconds

Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide

  • Abdel-Monaim, Montaser Fawzy
    • Mycobiology
    • /
    • v.41 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the combination between biocontrol agents and chemical inducers recorded the best results for controlling damping-off and root rot/wilt diseases in greenhouse and field with addition improved plant growth and increased yield components in field.

Studies on the Quaternization of Tertiary Amines (Ⅱ). Kinetics and Mechanism for the Reaction of Substituted Phenacyl Bromides with Substituted Pyridines (3차 아민의 4차화반응에 관한 연구 (제2보). 치환 브롬화페나실류와 치환 피리딘류와의 반응에 관한 반응속도론적 연구)

  • Yoh Soo Dong;Kwang Taik Shim;Lee Kyung A
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.110-118
    • /
    • 1981
  • Kinetics and mechanism for the reaction of substituted phenacyl bromides with substituted pyridines have been determined at 25, 35 and $45^{\circ}C$ in methanol and dimethylformamide by the conductivity method. The rate constants for the reaction of various pyridines with phenacyl bromide shown that electron-donating substituents in the pyridine increase the rate, while electron-attracting one decrease in both solvents. The effect of substituents in substrate, the rate being increased by electron-attracting substituents. This is as expected for nucleophilic attack of amines on the carbon atom. Isokinetic and $Br{\psi}nsted$ linear relationship were shown in the reaction of phenacyl bromide with pyridines in both solvent in which isokinetic temperature were obtained 614, $202^{\circ}K$ and ${\beta}$ values were 0.29, 0.36 in methanol and dimethylformamide respectively. In the case of the reaction of substituted phenacyl bromide with pyridines, isokinetic temperature decreases with increasing electron-attracting ability of the substituents in the phenacyl bromide, while the ${\beta}$ values were reverse. From the above results, it can be inferred that N…C bond formation decreases progressively from p-chloro- to p-methoxyphenacyl bromide and the bond formation predominates in DMF than methanol. The ${\rho}$ values of Hammett equation of the reaction of phenacyl bromide with substituted pyridines are negative in both solvent, but its value was larger negative in DMF than methanol and the ${\rho}$ value of that of substitutted substrates with pyridine was 0.3, the low value is ascribed to direct $S_N2$ attack of the nitrogen atom in pyridine ring at the methylene carbon.

  • PDF

Micellar Catalysis on 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Ethane-1,2-diol in Aqueous Media at Room Temperature

  • Ghosh, Sumanta K.;Saha, Rumpa;Ghosh, Aniruddha;Basu, Ankita;Mukherjee, Kakali;Saha, Indrajit;Saha, Bidyut
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.720-724
    • /
    • 2012
  • Under pseudo-first order conditions, the monomeric species of Cr(VI) was found to be kinetically active in the absence of phenanthroline (phen) whereas in the phen-promoted path, the Cr(VI)-phen complex undergoes a nucleophilic attack by etane-1,2-diol to form a ternary complex which subsequently experience a redox decomposition leading to hydroxy ethanal and Cr(III)-phen complex. The effect of the cationic surfactant (CPC), anionic surfactant (SDS) and neutral surfactant (TX-100) on the unpromoted and phen-promoted path have been studied. Micellar effects have been explained by considering the preferential partitioning of reactants between the micellar and aqueous phase. Combination of TX-100 and phenanthroline will be the ideal for chromic acid oxidation of ethane-1,2-diol in aqueous media.

Corrosion Inhibition of Steel Rebar in Concrete with the Coated MCI 2022

  • Bezad Bavarian;Lisa Reiner;Kim, Chong Y.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.63-67
    • /
    • 2002
  • The induced chemical and salt solution in water or admixture are originated to the corrosion process of the steeo rebar. These liquids penetrate into concrete as the accompanied by the chemical reaction and cause to attack the steel rebar in concrete. Concrete surfaces which it exposed to deicing, water and sea water is allowed to enter the chlorides in the structures. To prevent from the source of corrosion and deterioration Is subjected to put an end to corrode or reduce to contaminate on the steel rebar. As this reason the MCI 2022 products are applied to the surface of concrete and steel rebar. The concrete samples were made of to the kind of four, i.e. RF, MR, MS, and MM. Corrosion inhibitor is applied to coat on the surface of concrete after it had been cured for 28days. Specimen were immersed in a 3.5% sodium chloride solution. Concrete specimen were tested to determine the changes of the resistance polarization, Rp, over a 22 weeks period. MCI 2022 is significantly shown the corrosion inhibition of steel rebar in 3.5% NaCl solution. In the each different concrete sample, MS and MM is seemed to be better than others. The results are proofed that MCI 2022 is promised to maintain the inhibition of corrosion with high resistance polarization of the steel rebar in concrete.

  • PDF

Kinetics and Mechanism of the Anilinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl -5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1037-1041
    • /
    • 2012
  • The nucleophilic substitution reactions of (2R,4R,5S)-(+)-2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $5.0^{\circ}C$. The anilinolysis rate of 3 involving a cyclic five-membered ring is considerably fast because of small negative value of the entropy of activation (${\Delta}S^\neq=-2cal\;mol^{-1}\;K^{-1}$) over considerably unfavorable enthalpy of activation (${\Delta}H^\neq=18.0\;kcal\;mol^{-1}$). Great enthalpy and small negative entropy of activation are ascribed to sterically congested transition state (TS) and bulk solvent structure breaking in the TS. A concerted $S_N2$ mechanism with a backside nucleophilic attack is proposed on the basis of the secondary inverse deuterium kinetic isotope effects, $k_H/k_D$ < 1.

Significant Substituent Effects on Pyridinolysis of Aryl Ethyl Chlorophosphates in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1460-1464
    • /
    • 2014
  • The substituent effects on the pyridinolysis (XC5H4N) of Y-aryl ethyl chlorophosphates are investigated in acetonitrile at $35.0^{\circ}C$. The two strong ${\pi}$-acceptor substituents, X = 4-Ac and 4-CN in the X-pyridines, exhibit large positive deviations from the Hammett plots but little positive deviations from the Br$\ddot{o}$nsted plots. The substituent Y effects on the rates are really significant and the Hammett plots for substituent Y variations in the substrates invariably change from biphasic concave downwards via isokinetic at X = H to biphasic concave upwards with a break point at Y = 3-Me as the pyridine becomes less basic. These are interpreted to indicate a mechanistic change at the break point from a stepwise mechanism with a rate-limiting bond formation (${\rho}_{XY}$ = -6.26) for Y = (4-MeO, 4-Me, 3-Me) to with a rate-limiting leaving group expulsion from the intermediate (${\rho}_{XY}$ = +5.47) for Y = (4-Me, H, 3-MeO). The exceptionally large magnitudes of ${\rho}_{XY}$ values imply frontside nucleophilic attack transition state.

Activation of Aromatic Carbon-Hydrogen Bonds by Palladium Trifluoroacetate Complexes (Pd(CF3CO2)2 착화합물 촉매에 의한 방향족 탄소-수소 결합의 활성화 반응)

  • Hwang, Yeong-Ae;Kim, Dong-Hwan;Baek, Du-Jong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.5
    • /
    • pp.369-373
    • /
    • 2006
  • Arylation reactions of styrene catalyzed by Pd(CF3CO2)2-sulfides and Pd(CF3CO2)2-phosphines were investigated. The yield of trans-stilbene, the main product, increased as the basicity of the substituents on the aryl groups of the phosphines increased and the steric hindrance of the substituents decreased. The mechanism of the aryl migration of arylphosphines to styrene is proposed to involve the electrophilic attack of Pd to the phenyl group on the phosphines. The phosphine systems were found to be more effective than the sulfide ones.

Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1939-1944
    • /
    • 2011
  • The nucleophilic substitution reactions of bis(Y-aryl) chlorophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at 35.0 $^{\circ}C$. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorophosphates (2). The substrate 1 has one more identical substituent Y compared to substrate 2. The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of cross-interaction constant (CIC) from negative ${\rho}_{XY}$ = -1.31 (2) to positive ${\rho}_{XY}$ = +1.91 (1), indicating the change of reaction mechanism from a concerted $S_N2$ (2) to a stepwise mechanism with a rate-limiting leaving group departure from the intermediate (1). The deuterium kinetic isotope effects (DKIEs) involving deuterated anilines ($XC_6H_4ND_2$) show secondary inverse, $k_H/k_D$ = 0.61-0.87. The DKIEs invariably increase as substituent X changes from electron-donating to electron-withdrawing, while invariably decrease as substituent Y changes from electron-donating to electron-withdrawing. A stepwise mechanism with a rate-limiting bond breaking involving a predominant backside attack is proposed on the basis of positive sign of ${\rho}_{XY}$ and secondary inverse DKIEs.

Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Dey, Shuchismita;Kim, Chan-Kyung;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1138-1142
    • /
    • 2011
  • Kinetic studies for the reactions of Y-aryl phenyl chlorothiophosphates with X-pyridines have been carried out in acetonitrile at $35.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles are biphasic concave upwards with a break point at X = 3-Ph, while the Hammett plots for substituent Y variations in the substrates are biphasic concave downwards (and partially upwards) with a break point at Y = H. The signs and magnitudes of the cross-interaction constant (${\rho}_{XY}$) are strongly dependent upon the nature of substituents, X and Y. The proposed mechanism is a stepwise process with a rate-limiting step change from bond breaking with the weaker electrophiles to bond formation with the stronger eletrophiles. The nonlinear free energy correlations of biphasic concave upward plots for substituent X variations in the nucleophiles are rationalized by a change in the attacking direction of the nucleophile from a backside with less basic pyridines to a frontside attack with more basic pyridines.

Characteristics of Chemical Reaction and Ignition Delay of $H_2$/Air/HFP Mixtures (수소/공기/HFP 혼합기의 화학반응 및 점화지연 특성)

  • Lee, Eui-Ju;Oh, Chang-Bo
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • The chemistry and ignition delay of hydrogen/air/HFP premixed mixtures was investigated numerically with unsteady perfectly stirred reactor(PSR). The detailed chemistry of 93 species and 817 reaction mechanism was introduced for hydrogen/air/HFP mixtures. The results shows the temporal concentration variations of major or reactants such as hydrogen and oxygen during autoignition were similar to the spatial distribution of premixed flame while water vapor produced at the ignition temperature was decomposed later, which can be clarified with the relate species production rates that the the re-growth (or shoulder) of OH concentration is a result of F radicals attacking $H_20$ forming OH and HF. For the stoichiometric $H_2$/air mixture inhibited by 20% HFP, HFP thermal decomposition reaction prevails over the radical attack such as H at initial stage. Even though relatively large HFP addition contributes to delay the ignition, chemical effect on the ignition delay is not effective because of late thermal decomposition of HFP. The most small ignition delay was observed at a slightly fuel lean condition ($\phi$ = 0.9), and temperature dependency of ignition delay was clearly shown near 900 K.