• Title/Summary/Keyword: Chemical and physical characteristics

Search Result 1,508, Processing Time 0.031 seconds

Strength Estimation of Ready-Mixed Concrete Using Crushed Sand (부순모래를 사용한 레디믹스트 콘크리트의 배합설계 및 강도추정방법)

  • Suh, Jin-Kook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • It is difficult to keep the balance of supply and demand for natural aggregates in recent years, because natural resources have become to be almost exhausted. Crushed stone is already used for coarse aggregate instead of river gravel at present. Now, crushed sand or sea sand should be used for fine aggregate, because natural sand also has been exhausted with a few exceptions around Nakdong River. The sea sand has a lot of problems which are the corrosion of reinforcement bars, the investment of facility for cleansing salt and the cost increase due to the insufficiency of industrial water. Therefore, it is necessary to produce and to utilize the crushed sand very actively, but some material properties which are related to water absorption, strength and chemical durability, prevent from determining the generalized criteria because its rocks make much differences in its physical and chemical characteristics. In this paper, fundamental physical properties of crushed sand, which comes from Daegu Subway construction fields, have been investigated for the usability on basic material of concrete. The optimum replacement ratio and the strength estimation method of crushed sand replacing natural sand also have been presented here through the compressive strength test of ready-mixed concrete cylinders.

  • PDF

A Study on Modification of NBR Rubber Roll (I) -NBR/PVC Blend Systems- (NBR계(系) 고무롤의 생성개질(物性改質)에 관(關)한 연구(硏究) (I) -NBR/PVC 혼합계(混合系) 고무-)

  • Seo, Kwan-Ho;Ko, Young-Cheol;Ha, Hyun-Dal;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.195-206
    • /
    • 1995
  • To modify the NBR rubber roll which has poor abrasion and chemical resistance, NBR/PVC blends were prepared in various composition ratios. First of all, their miscibility and vulcanization characteristics were investigated. Their abrasion and chemical resistant properties and physical properties were also studied. DSC thermograms for NBR/PVC blends show only one Tg in the entire composition range, demonstrating a perfect miscibility. In the vulcanization characteristics tested by rheometer, maximum torque decreases as PVC contents increased. In the investigation of physical properties of NBR/PVC blends, hardness increases and elongation decreases along with the increasing contents of PVC. On the other hands, tensile strength increases with the increasing contents of PVC up to 11.1 wt. %, and then decreases with higher contents of PVC. While the abrasion resistance of NBR/PVC blends was similar to that of NBR itself, the chemical resistance of NBR/PVC blends was superior to that of NBR.

  • PDF

Influence of Aminized Graphite Nanosheets on the Physical Properties of PMMA-based Nanocomposites

  • Kim, Ki-Seok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.196-200
    • /
    • 2011
  • In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated graphite nanosheets ($NH_2$-GNs) and the surface characteristics and physical properties of the $NH_2$-GNs-g-PMMA films were investigated. The graft reaction of $NH_2$-GNs and PMMA was confirmed from the shift of the $N_{1S}$ peak, including amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The surface characteristics of the $NH_2$-GNs-g-PMMA films were measured as a function of the $NH_2$-GN content using the contact angle method. It was revealed that the specific component of the surface free energy (${\gamma}s$) of the films was slightly increased as the $NH_2$-GN content increased. Also, the thermal and mechanical properties of the $NH_2$-GNs-g-PMMA films were enhanced with the addition of $NH_2$-GNs. This can be attributed to the chemical bonding caused by the graft reaction between the $NH_2$-GNs and the PMMA matrix.

A Study on the Utilization of Industrial Solid Organic Wastes (I). The Physical and Chemical Characteristics of Industrial Solid Wastes with Regard to Fertilizer Value and Humus Sources (산업 고형유기폐물의 자원화에 관한 연구 (제1보) 산업 고형유기폐물의 비료와 Humus 원으로서의 물리적 및 화학적 특성에 관하여)

  • Park Nae Joung;Kim, Yong In
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.258-268
    • /
    • 1975
  • The physical and chemical characteristics of solid organic wastes from paper and pulp industries, tanneries, and food processing industries were studied with regard to fertilizer value as well as humus sources as a rational method of waste utilization. The pulp and paper mill wastes containing low mineral nutrients but high lignin may be utilized for soil amendments through humus preparation. Chemical treatment sludges of tannery wast water contained appreciable fertilizer nutrients andiliming materials, but utilization as fertilizers or soil amendments depends on the pollution effect of high chromium content, which has not been well understood. Food processing wastes may be utilized as organic fertilizers or micronutrient sources for plant. Some wastes containing high water-soluble sugars or lower C/N ratio than 20 may be utilized as additives for rapid humus preparation.

  • PDF

Pervaporation Separation of Water/Ethanol Mixtures through PBMA/anionic PAA IPN Membrane

  • Jin, Young-Sub;Kim, Sung-Chul
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.86-87
    • /
    • 1996
  • IPN (Interpenetrating Polymer Network) is a mixture of two or more crosslinked polymers with physically interlocked network structures between the component polymers. IPN can be classified as an alloy of thermosets and has the characteristics of thermosets such as the thermal resistance and chemical resistance and also has the characteristics of polymer alloys with enhanced impact resistance and amphoteric properties. The physical interlocking during the synthesis restricts the phase separation of the component polymer with chemical pinning process, thus the control of morphology is possible through variations of the reaction temperature and pressure, catalyst concentration and crosslinking agent concentration. Finely dispersed domain structure can be obtained through IPN synthesis of polymer components with gross immiscibility. In membrane applications, particularly for the separation of liquid mixtures, crosslinked polymer component with specific affinity to the permeate is needed. With the presence of the permeant-inert polymer component, the mechanical strength and the selectivity of the membranes are enhanced by restricting the swelling of the transporting polymer component networks.

  • PDF

The Synthesis of Aziridine bonding agent and the Study of Characteristics (Aziridine계 Bonding agent 합성 및 특성연구)

  • Yang Eui-Seok;Ryu Hee-Jin;Yoo Kwang-Ho;Son Won-Jung;Lim Jeong-On
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.215-222
    • /
    • 2004
  • We synthesized a aziridine bonding agent that play an important role in increasing the adhesion property between polymer binders and solid particles. It increases the physical properties of polymer-based propellant. Chemical reaction between two materials increase the interface adhesion. We analyzed and studied the chemical characteristics of the material and physical properties of a liner applied the aziridine bonding agent. We also studied the adhesion property of a liner/propellant applied the aziridine bonding agent. 3M was use as control group. In accordance with US MIS (Missile Interim Specification) we examined the chemical properties. As a result of our study, newly synthesized aziridine bonding agent was as good as quality of 3M HX-868.

  • PDF

The Estimation of the Extent of Weathering using Fractal Dimension through a Comparison with Chemical Characteristic (화학적 특성과의 비교 분석을 통한 프랙탈 차원을 이용한 풍화도 추정)

  • Noh, Soo-Kack;Son, Young-Hwan;Bong, Tae-Ho;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.127-135
    • /
    • 2012
  • The processes of chemical and physical weathering occur simultaneously. The objective of this study was to estimate the degree weathered using fractal dimension through comparison with chemical characteristic of soil samples from Pohang (PH) and Kimpo (KP). Comparing chemical characteristics with fractal dimension, $SiO_2$, $Na_2O$, $K_2O$ content decreased and loss of ignition increased as fractal dimension increased. And fractal dimension showed high correlation with CWI while ATI, STI CIW, PI, CIA and RR demonstrated different degrees of correlation with fractal dimension. The tendency of the changes in oxide content and chemical weathering index with increasing fractal dimension appeared to be similar with the chemical changes due to weathering. Therefore, fractal dimension could be a good indicator representing the extent of weathering and chemical changes.

Chemical and Physical Characteristics of Expanded Rice Husk Medium on Growth of Rice Seedling

  • Ko Jonghan;Ham Jin Kwan;Kim Yong Bok;Kim Kyung Hee;Lee Byun Woo;Lee Youn Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.2
    • /
    • pp.120-124
    • /
    • 2005
  • Expanded rice husk (ERR) is different from commercial rice seedling media in chemical and physical properties such as pH, permeability, and water content. This study was conducted to test a possibility of improving rice seedling growth by improving the texture of ERR as a rice seedling medium. The seedling media used were a commercial seedling medium (CSM), rice husk, and ERR 1, 2, 3, and 4 with different expansion degrees. The pH of the ERHs ranged from 6.3 to 6.8. As the expansion rate increased, ERR particle sizes decreased, and water permeability and absorption rates improved. No significant differences in shoot dry weight and rate of maturity were found among the seedlings cultivated in the different ERH media. However, the mat formation of seedling roots became loose as the expansion rates were decreased. Further studies are necessary to determine the cause of poor root growth in ERH media.

The Literature Review of Parkinson's Disease and Physical Therapy Approach (파킨슨 질환과 물리치료접근에 관한 고찰)

  • Kim Dong-Hyun;Baek Su-Jeong;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.2
    • /
    • pp.203-217
    • /
    • 2000
  • This review describes the overall knowledges of parkinson's disease. There are involved the causes. chemical characteristics, clinical features including tremor. bradykinesia, and rigidity. evaluation of movement disorders. and physical therapy of parkinson's disease. People who are diagnosed with parkinson's disease experience movement disorders that, if not managed, can lead to considerable disability. Before treated with parkinson's disease, it is important to recognise the pathogenesis of that. Then we need to develop physiotherapeutic programs based on the pathophysiology of parkinson's disease.

  • PDF

Extinguishing Characteristics of Zeolite adsorbed Dry Chemical Powder (분말 소화약제가 흡착된 제올라이트의 소화 특성)

  • Shin, Changsub;Park, Hojun
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.59-63
    • /
    • 2012
  • The use of dry chemical powder has been increased as it can be stored for a long period and sustain in stable condition compared to gas or liquid phase extinguishing agents. A new type of dry chemical powder using Zeolite was produced in the research. Chemical powder was adsorbed into Zeolite 13X, a porous material appearing negative catalytic effect, to create extinguishing powder obtaining core shell structure and measured physical properties and run a small scale fire extinguishment. SEM, XRD, TA analysis was also executed, and extinguishing characteristics were measured by fire extinguishing experiment on oil pool fire. The experiment showed that the average particle size of Zeolite 13X was equivalent, indicating about $3{\pm}1{\mu}m$ and thermal analysis result illustrated that Zeolite 13X showed exothermic reaction peaks at $900^{\circ}C$ due to solid-state transformation. Extinguishing characteristics on oil fire of $NaHCO_3$/Zeolite 13X and $NH_4H_2PO_4$/Zeolite were improved, influenced by adsorbed extinguishing powders on Zeolite 13X and Zeolite 13X that contains high phase transition temperature.