• Title/Summary/Keyword: Chemical amendments

Search Result 87, Processing Time 0.024 seconds

Characteristics of Ash (Coal, Wood and Rice Hull) and Its Potential Use as an Additive in Poultry Manure for Protecting the Environment (재(석탄, 목재, 왕겨재)의 특성과 환경보호를 위하여 계분의 첨가 가능성에 관한 연구)

  • Nahm K.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.1
    • /
    • pp.65-80
    • /
    • 2006
  • Ash amendment to manure holds potential as a method to neutralize manure for reducing odor and reduce phosphorus (P) solubility in runoff from fields where manure has been applied. This review focuses on the literature published about ash characteristics and their environmental uses. There is no uniform physico-chemical definition of the selected ashes (coal fly ash-CFA, wood ash-WA, and rice hull ash-RHA) used in various studies. These ashes vary greatly in their acidity (pH<6.0) or alkalinity (pH>12.5) based on the conditions at which they were farmed and the composition of the ash source. CFA amendment to manure reduced manure-P solubility and application of CFA amended manure to agricultural soils is a method to improve water quality WA may prove to be a valuable manure odor control amendment since WA contains a high level of carbon. A major biomass source is rice hull (husk) which provides an ash source (RHA). The .ice hull and RHA are sources of silica, compromising about 20% and 60%, respectively. So far research has been directed at the use of CFA, WA and RHA as soil amendments, but there is potential use of these materials as manure additives to sequester P and reduce odors.

Effect of application of coffee sludge and dried food waste powder on the growth Peucedanum japonicum Thunberg

  • Jeon, Young-Ji;Hwang, Hyun-Chul;Eun, Jin-A;Jung, Samuel;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.193-204
    • /
    • 2020
  • This experiment was conducted to study the effect of organic fertilizer on the growth of Peucedanum japonicum Thunberg and the change of soil chemical characteristics. The organic matter contents of coffee sludge and dried food waste powder were 44.26 and 51.18%, respectively. These values exceed the organic matter content of organic fertilizers recommended by the Rural Development Administration (RDA) of South Korea by more than 30%. Accordingly, they indicate the possibility of their use as organic fertilizers. The results from the analysis of soil properties after cultivation showed that the organic matter content of coffee sludge amended soils was two-fold higher than that of dried food waste powder amended soils. However, the content of available phosphorus was two times lower in the coffee sludge amendments. It is expected that the dried food waste powder was actively used to decompose organic substances, and that phosphoric acid was added by the soil microorganisms used to decompose organic substances. In terms of Peucedanum japonicum Thunberg growth, leaf discoloration was observed for all treatments except with the standard rate of dried food waste powder. The standard rate of dried food waste powder also produced relatively better results than other treatments with regard to other growth characteristics such as root length (34.08 cm), root diameter (0.78 cm), and fresh root weight (4.77 g plant-1). Therefore, the standard rate of dried food waste powder produced better results than other treatments and can be used as an organic fertilizer in the growth of Peucedanum japonicum Thunberg.

Effects of Fertilizer and Sewage Sludge Treatments on Germination and Growth of Woody Plants in Metal Mine Tailings

  • Lee, Sul-Ki;Cho, Do-Soon
    • The Korean Journal of Ecology
    • /
    • v.23 no.6
    • /
    • pp.445-452
    • /
    • 2000
  • The effects of sludge and fertilizer application on germination and seedling growth of woody plants on heavy metal mine tailings were evaluated by greenhouse experiment. Two different mine tailings (Lead-zinc mine tailings from Kwangmyong, Kyonggi-do and tungsten mine tailings from Sangdong. Kangwon-do). four fertilizer treatments (N +P +K: 20, 40, 60, and 80 kg/m$^3$), and four sewage sludge treatments (5.5, 11, 22.5, and 45 Mg/m$^3$) were used in the experiment. Tested plants were Pinus densiflora, Larix leptolepis, Amorpha fruticosa, and Alnus hirsuta. There were three replicates for each treatment. In addition, vermiculite was used instead of mine tailings to determine the effect of physical amendments. Fifty seeds of a species were sown in a pot (upper diameter 13.5 cm, depth 10 cm) and seedling emergence were recorded daily for 30 days. The highest germination rate was 53% for all treatments. Germination rate of Larix leptolepis was lowest among the four species studied. One month later after seeding, seedlings were thinned and only 5 seedling were left in each pot, and fertilizer and sewage sludge were applied once again. Growth of seedlings were determined for 10 weeks since then. Most plants grew very poorly or died within 5 weeks on lead/zinc mine tailings from Kwangmyong. The analysis of heavy metal contents by the total dissolution method showed that heavy metals generally increased in the order of tungsten mine tailings from Sangdong < sewage sludge from Puchon < lead/zinc mine tailings from Kwangmyong. Growth of woody plants was improved significantly by the fertilizer treatments on tungsten mine tailings. In contrast. survival and growth of woody plants were not affected significantly by the sewage sludge treatment on both tailings. This study shows that fertilizer applied to established seeded stands may provide some benefits in terms of increased ground cover in the field. It is suggested that reclamation should be proceeded by the study of the physico-chemical and biological characteristics of mine tailings.

  • PDF

Byproducts from Piggery Wastewater Treatment for the Sustainable Soil Amendment and Crop Production

  • Yang, Jae E.;Kim, Jeong-Je;Shin, Young-Oh;Shin, Myung-Kyo;Park, Yong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.140-145
    • /
    • 1999
  • Livestock manure is generally beneficial to soil and crop production when appropriate amount is applied, but excessive application may be detrimental to soil and water environments. A proper protocol of livestock waste treatment is required to manage the quality of soil and water. A trickling filter system using rice straw media was employed to treat piggery wastewater from small-scaled livestock farms as an alternative to the currently available methods. Batches of piggery wastewater were treated with this system, and the byproducts of rice straw media and trickling filtrate were applied to the soil with cultivating rye (Secale cereale L.). Objective of this research was to characterize these byproducts for the sustainable soil amendments and rye production. Both the treated straw medium and filtrate were proven to be effective organic fertilizers for rye plant development, with the enhanced but balanced absorption of nutrients. The synergistic effects of filtrate in addition to straw application did not show, but the filtrate appeared to lead to a higher water content of the plant. No specific nutrient deficiency or toxicity symptom was shown due to the salts derived from the byproducts applied. Chemical parameters of the soil quality were significantly improved with the application of straw medium either with or without the filtrate. Judging from parameters relating to the salt accumulations, such as sodium adsorption ratio (SAR), electrical conductivity (EC), exchangeable sodium percentage (ESP), potassium adsorption ratio (KAR), and residual P concentrations, the byproducts from piggery wastewater exhibited no detrimental effects on soil quality within the ranges of treatments used. In addition to the effectiveness of the rice straw trickling filter system for the small-scaled swine farms, both rice straw medium and filtrate could be recycled for the sustainable soil amendment and plant nutrition.

  • PDF

Available Organic Carbon Controls Nitrification and Immobilization of Ammonium in an Acid Loam-Textured Soil

  • Choi, Woo-Jung;Lee, Sang-Mo;Han, Gwang-Hyun;Yoon, Kwang-Sik;Jung, Jae-Woon;Lim, Sang-Sun;Kwak, Jin-Hyeob
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.28-32
    • /
    • 2006
  • Effect of organic-C on immobilization and nitrification patterns in acidic soil was examined during 20 weeks incubation period to verify if organic amendments such as composted material can increase soil retention of N by stimulating microbial immobilization of $NH_4^+$. Four treatments were laid out: control without fertilizer N and glucose (treatment code: S), ammonium sulfate (SN), ammonium sulfate with single glucose at the commencement (0 week) of incubation (SNG), and ammonium sulfate with double glucose at 0 and 4 weeks of incubation (SNGG). Glucose application (SNG) significantly increased microbial immobilization of $NH_4^+$ within 1 week of incubation over SN. Immobilization was followed by remineralization thereafter; however, second-application of glucose (SNGG) restored $NH_4^+$ immobilization. At the same time, nitrification was significantly inhibited by glucose application as indicated by consistently low $NO_3^-$ concentration in SNG and SNGG soils, suggesting that microbial assimilation of $NH_4^+$ is predominant compared to nitrification when available C-source is abundant. These results suggest application of chemical fertilizer-N with organic amendment would have beneficial effect on soil-N retention and environmental conservation by reducing production of $NO_3^-$ which is likely to be lost through leaching or denitrification.

Effects of Additives on Greenhouse Gas Emission during Organic Waste Composting: A Review and Data Analysis (첨가제가 유기성 폐기물 퇴비화 과정 중 온실가스 발생에 미치는 영향: 리뷰 및 데이터 분석)

  • Seok-Soon Jeong;Byung-Jun Park;Jung-Hwan Yoon;Sang-Phil Lee;Jae-E. Yang;Hyuck-Soo Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.358-370
    • /
    • 2023
  • Composting has been proposed for the management of organic waste, and the resulting products can be used as soil amendments and fertilizer. However, the emissions of greenhouse gases (GHGs) such as CO2, CH4, and N2O produced in composting are of considerable concern. Hence, various additives have been developed and adopted to control the emissions of GHGs. This review presents the different additives used during composting and summarizes the effects of additives on GHGs during composting. Thirty-four studies were reviewed, and their results showed that the additives can reduce cumulative CO2, CH4, and N2O emission by 10.5%, 39.0%, and 28.6%, respectively, during composting. Especially, physical additives (e.g., biochar and zeolite) have a greater effect on mitigating N2O emissions during composting than do chemical additives (e.g., phosphogypsum and dicyandiamide). In addition, superphosphate had a high CO2 reduction effect, whereas biochar and dicyandiamide had a high N2O reduction effect. This implies that the addition of superphosphate, biochar, and dicyandiamide during composting can contribute to mitigating GHG emissions. Further research is needed to find novel additives that can effectively reduce GHG emissions during composting.

Inoculation Effect of Methylobacterium suomiense on Growth of Red Pepper under Different Levels of Organic and Chemical Fertilizers (화학비료와 유기질비료의 시용수준 및 Methylobacterium suomiense CBMB120의 처리가 고추 생육에 미치는 영향)

  • Lee, Min-Kyoung;Lee, Gil-Seung;Yim, Woo-Jong;Hong, In-Soo;Palaniappan, Pitchai;Siddikee, Md. Ashaduzzaman;Boruah, Hari P. Deka;Madhaiyan, Munusamy;Ahn, Ki-Sup;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.266-273
    • /
    • 2009
  • Use of plant growth promoting symbiotic and non-symbiotic free-living beneficial bacteria as external source of nitrogen is a major research concern for sustainable crop production in the $21^{st}$ century. In view of this, an experiment was conducted under controlled conditions to determine the effects of inoculation with Methylobacterium suomiense CBMB120, a plant growth promoting (PGP) root and shoot colonizer on red pepper, for the purpose of reducing external chemical nitrogen fertilization. Amendments with organic fertilizer and chemical fertilizer in the form of NPK were made at dosages of 50%, 75% and 100%, at 425 and $115kg/ha^{-1}$ measurements. The soil type used was loam, with a pH of 5.13. The growth responses were measured as plant height at 19, 36 and 166 days after transplantation and final biomass production after 166 days. It was found that inoculation with M. suomiense CBMB120 promotes plant height increase during the active growth phase at 19 and 36 days by 14.17% and 10.03%, respectively. Thereafter, the bacteria inoculated plantlets showed canopy size increment. A highly significant inoculation effect on plant height at p<0.01 level was found for 100% level of organic matter and chemical amendment in red pepper plantlets after 36 days and 19 days from transplantation. Furthermore, there was a significantly higher (10.30% and 6.84%) dry biomass accumulation in M. suomiense CBMB120 inoculated plants compared to un-inoculated ones. A 25% reduction in the application of chemical nitrogen can be inferred with inoculation of M. suomiense CBMB120 at with comparable results to that of 100% chemical fertilization alone. Enumeration of total bacteria in rhizosphere soil confirms that the introduced bacteria can multiply along ther hizosphere soil. Large scale field study may lead to the development of M. suomiense CBMB120 as an efficient biofertilizer.

Soil Physicochemical Properties by applied with Mixed Ratio Soldier Fly (Hermetia illucens) Casts (동애등애 분변토의 혼합비율에 따른 토양이화학적 특성)

  • Kim, Young-Sun;Lee, Sang-Beom;Ham, Suon-Kyu;Lim, Hye-Jung;Cboe, Young-Cheol
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.106-111
    • /
    • 2011
  • This study was conducted to investigate the effect of the mixture ratio of a soldier fly casts (SFC), compost and cocopeat on the soil physicochemical properties. The mixture ratios of soil amendment were 0%, 3%, 5%, 7% and 10% (V/V) incorporated with sand which met to the USGA particle standard. To analyze the effects of amendments on soil chemical properties, pH and EC were measured. The porosity, capillary porosity, air-filled porosity, bulk density and hydraulic conductivity also measured to analyze the physical properties. Chemical properties were significantly different by mixture ratios of a SFC, compost and cocopeat. Capillary porosity was a factor involved in soil physical properties by blending with a SFC and compost. It was affected on the volume of porosity or hydraulic conductivity. To analyze the correlation of mixture ratio versus to physical characters, the ratios of SFC were significantly different in capillary porosity, air-filled porosity, and hydraulic conductivity. These results indicated that mixing ratios of SFC were affected on soil physicochemical properties such as porosity and hydraulic conductivity of the root zone on the USGA sand green.

Monitering of Heavy Metal (loid)s Contamination of Arable Soils near Industrial Complexes in Gyeongnam Province of South Korea

  • Park, Hye Jin;Lee, Hyun Ho;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.589-597
    • /
    • 2016
  • There are a number of industrial complexes which could be a source of heavy metal (loid)s contamination of arable soil in Gyeongnam province of South Korea. Heavy metal (loid)s accumulation of plant is more related to the concentration of plant available heavy metal (loid)s in arable soil than that of total heavy metal (loid)s. The objectives of this study were 1) to examine heavy metal concentrations in soils located near industrial complexes in Gyeongnam province and 2) to determine the relationship between concentration of plant available heavy metal (loid)s and chemical properties of soil. Soil samples were collected from 85 sites of arable lands nearby 7 industrial complexes in Gyeongnam province. Total heavy metal (loid)s concentration, available heavy metal (loid)s concentration, and chemical properties of collected soils were measured. The mean concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the soils were $5.8mg\;kg^{-1}$, $1.3mg\;kg^{-1}$, $0.03mg\;kg^{-1}$, $51.5mg\;kg^{-1}$, and $68.7mg\;kg^{-1}$, respectively. Total concentration of Cd and Zn in arable soil located near ${\nabla}{\nabla}$ industrial complex exceeded the warning criteria ($4mg\;kg^{-1}$ and $300mg\;kg^{-1}$ for Cd and Zn, respectively) as described by in the soil environmental conservation Act of Korea. The concentration of plant available heavy metal (loid)s was negatively related to the soil pH and available Pb and Zn concentrations had relatively high correlation coefficient when compared with other heavy metal (loid)s. The concentration of plant available Pb and Zn was negatively related to that of organic matter (OM). Based on the above results, it might be a good soil management to control pH and OM concentration with soil amendments such as lime and compost to reduce phytoavailability of heavy metal (loid)s in arable soil located near industrial complex.

Chromium Distribution in Korean Soils: A Review (우리나라 토양의 크롬 분포특성에 관한 고찰)

  • Kim, Rog-Young;Sung, Jwa-Kyung;Lee, Ju-Young;Kim, Seok-Cheol;Jang, Byoung-Choon;Kim, Won-Il;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.296-303
    • /
    • 2010
  • Chromium as a constituent of rocks occurs naturally in the environment in varying concentrations. However, the human activity has changed the geochemical cycle of chromium in the environment and has caused the chromium accumulation in soils. Korean soils revealed a wide range of chromium contents depending on parent material and land use. The total chromium contents of volcanic ash soils in Jeju, which were determined using $HNO_3$ + $HClO_4$ + HF, ranged from 434 to 1,164 mg $kg^{-1}$. The 'ecological' total chromium contents extracted using conc. HCl + conc. $HNO_3$ (aqua regia) in the same soils varied in a lower range of 50-189 mg $kg^{-1}$ (averaged percentage of aqua regia contents in $HNO_3$ + $HClO_4$ + HF contents: 14.9%). Serpentine soils in Andong showed a 'ecological' total chromium content of 309 mg $kg^{-1}$ and against it granitic soils in Andong only 20 mg $kg^{-1}$. In uncontaminated forest soils of Korea, the 'ecological' total chromium contents varied from 4.89 to 106 mg $kg^{-1}$ and the soluble chromium contents determined using 0.1 M HCl ranged from 0.01 to 0.64 mg $kg^{-1}$ (averaged percentage of 0.1 M HCl contents in aqua regia contents: 0.4%). Arable lands contained more soluble chromium than reported in forest soils (averaged soluble chromium: 0.36 and 0.09 mg $kg^{-1}$, respectively). In particular, the soluble chromium contents in greenhouse, orchard and upland soils were higher than in contaminated soils near mine and industrial site (maximum contents: greenhouse 15.3 mg $kg^{-1}$; upland 12.1 mg $kg^{-1}$; orchard 8.29 mg $kg^{-1}$; mine site 4.76 mg $kg^{-1}$; industrial site 2.80 mg $kg^{-1}$). On the basis of these results a accumulation of chromium in some specific arable lands can be assumed, probably by long-continued applications of fertilizers or soil amendments containing chromium. In Korean Enforcement Decree of the Soil Environment Conservation Act soil standards for total chromium do not exist yet.