• Title/Summary/Keyword: Chemical activation

Search Result 1,788, Processing Time 0.039 seconds

Effect of Activation Temperature on CO2 Capture Behaviors of Resorcinol-based Carbon Aerogels

  • Moon, Cheol-Whan;Kim, Youngjoo;Im, Seung-Soon;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.57-61
    • /
    • 2014
  • In this study, carbon aerogel (CA) was synthesized using a soft-template method, and the optimum conditions for the adsorption of carbon dioxide ($CO_2$) by the carbon aerogel were evaluated by controlling the activation temperature. KOH was used as the activation agent at a KOH/CA activation ratio of 4:1. Three types of activated CAs were synthesized at activation temperatures of $800^{\circ}C$(CA-K-800), $900^{\circ}C$(CA-K-900), and $1000^{\circ}C$(CA-K-1000), and their surface and pore characteristics along with the $CO_2$ adsorption characteristics were examined. The results showed that with the increase in activation temperature from 800 to $900^{\circ}C$, the total pore volume and specific surface area sharply increased from 1.2165 to $1.2500cm^3/g$ and 1281 to $1526m^2/g$, respectively. However, the values for both these parameters decreased at temperatures above $1000^{\circ}C$. The best $CO_2$ adsorption capacity of 10.9 wt % was obtained for the CA-K-900 sample at 298 K and 1 bar. This result highlights the importance of the structural and textural characteristics of the carbon aerogel, prepared at different activation temperatures on $CO_2$ adsorption behaviors.

Role of Metabolic Activation by Cytochrome P450s in Chemical- induced Immunosuppression

  • Jeong, Tae-Cheon;Lee, Eung-Seok;Chae, Whi-Gun
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.201-205
    • /
    • 2002
  • It is generally accepted that the immune system is one of the major target organs for many toxic chemicals. In addition, many toxic chemicals require metabolic activation by cytochrome P450s for their toxicity. Although the immune cells possess a limited amount of drug metabolizing capacity, metabolic activation of certain toxicants in liver and immune organs may have a significant role in immunosuppression. In the present studies, the possible role of metabolic activation by cytochrome P450s in chemical-induced immunosuppression was reviewed, with a particular emphasis on the methodological techniques to detect immunotoxicants requiring metabolic activation in vivo and in vitro. (omitted)

  • PDF

Effect of Carbon Black Activation on Physicomechanical Properties of Butadiene-nitrile Rubber

  • Shadrinov, N.V.;Kapitonov, E.A.;Sokolova, M.D.;Okhlopkova, A.A.;Shim, Ee Le;Cho, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2891-2894
    • /
    • 2014
  • The effects of mechanical activation of carbon black on the processing and properties of butadiene nitrile rubber were studied. Mechanical activation of carbon black caused an improvement in the physical and mechanical properties of the butadiene-nitrile rubber, BNR-18AMN. The optimum activation time that would afford rubber with improved properties was established.

Structural Characterization and EDLC-Electrode Performance of Coal-Tar-Pitch Activated Carbon Using K2CO3 Treatment (K2CO3 처리된 Coal Tar Pitch 활성탄 전극의 결정성 및 EDLC 성능)

  • Choi, Poo Reum;Jung, Ji Chul;Lim, Yun-Soo;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.460-467
    • /
    • 2016
  • Activated carbons (ACs) have been used as EDLC (electric double-layer capacitor) electrode materials due to their high specific area, stability, and ecological advantages. In order to prepare ACs with high density and crystallinity, coal tar pitch (CTP) was activated by $K_2CO_3$ and the textural and electrochemical properties of the obtained ACs were investigated. Although the CTP ACs formed by $K_2CO_3$ activation had much smaller specific surface area and pore volume than did the CTP ACs formed by KOH activation, their volumetric specific capacitance (F/cc) levels as electrode materials for EDLC were comparable due to their higher density and micro-crystallinity. Structural characterization and EDLC-electrode performance were studied with different activation conditions of $CTP/K_2CO_3$ ratio, activation temperature, and activation period.

Preparation and Characterization of OXI-PAN Based Carbon Fibers Activated by Hydroxides (수산화물에 의해 활성화된 OXI-PAN계 섬유의 제조 및 특성)

  • Moon, Sook-Young;Han, Dong-Yun;Lee, Byung-Ha;Lim, Yun-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.469-474
    • /
    • 2005
  • Activated Carbon Fibers (ACFs) are widely used as adsorbents in technologies related to pollution abatement due to their highly porous structure and large adsorption capacity. The porous structure and surface area of ACFs depends strongly on both the activation processes arid the nature .of the precursors. The chemical activation with hydroxides has recently been, of great interest as it permits the preparation of activated carbon fibers with highly developed porosity. In this work, OXI-PAN fiber used as precursor for the preparation of activated carbon fibers by chemical activation with KOH and NaOH. The affects of several activation conditions on the surface properties, pore size distribution and adsorption capacity of Ag ion and Iodine ion on ACFs studied.

Synthesis of Activated Carbon from Rice Husk Using Microwave Heating Induced KOH Activation

  • Nguyen, Tuan Dung;Moon, Jung-In;Song, Jeong-Hwan;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.321-327
    • /
    • 2012
  • The production of functional activated carbon materials starting from inexpensive natural precursors using environmentally friendly and economically effective processes has attracted much attention in the areas of material science and technology. In particular, the use of plant biomass to produce functional carbonaceous materials has attracted a great deal of attention in various aspects. In this study the preparation of activated carbon has been attempted from rice husks via a chemical activation-assisted microwave system. The rice husks were milled via attrition milling with aluminum balls, and then carbonized under purified $N_2$. The operational parameters including the activation agents, chemical impregnation weight ratio of the calcined rice husk to KOH (1:1, 1:2 and 1:4), microwave power heating within irradiation time (3-5 min), and the second activation process on the adsorption capability were investigated. Experimental results were investigated using XRD, FT-IR, and SEM. It was found that the BET surface area of activated carbons irrespective of the activation agent resulted in surface area. The activated carbons prepared by microwave heating with an activation process have higher surface area and larger average pore size than those prepared by activation without microwave heating when the ratio with KOH solution was the same. The activation time using microwave heating and the chemical impregnation ratio with KOH solution were varied to determine the optimal method for obtaining high surface area activated carbon (1505 $m^2$/g).

Electrochemical characteristics of active carbon prepared by chemical activation for anode of lithium ion battery (이차전지 음극용 화학적 활성화법으로 제조된 활성탄의 전기화학적 특성)

  • Lee, Ho-Yong;Kim, Tae-Yeong;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.480-487
    • /
    • 2015
  • In this study, several kinds of active carbons with high specific surface area and micro pore structure were prepared from the coconut shell charcoal using chemical activation method. The physical property of prepared active carbon was investigated by experimental variables such as activating chemical agents to char coal ratio, flow rate of inert gas and temperature. It was shown that chemical activation with KOH and NaOH was successfully able to make active carbons with high surface area of $1900{\sim}2500m^2/g$ and mean pore size of 1.85~2.32 nm. The coin cell using water-based binder in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC:DMC:EMC=1:1:1 vol%) showed better capacity than that of oil-based binder. Also, it was found that the coin cell of water-based binder shows an improved cycling performance and coulombic efficiency.