References
- Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879. https://doi.org/10.1021/cr9411886
- Dyker, G. Angew. Chem. Int. Ed. 1999, 38, 1698. https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1698::AID-ANIE1698>3.0.CO;2-6
- Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. https://doi.org/10.1021/cr0104330
- Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318. https://doi.org/10.1021/cr068006f
- Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094. https://doi.org/10.1002/anie.200806273
- Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. https://doi.org/10.1021/cr900184e
- Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16, 2654. https://doi.org/10.1002/chem.200902374
- Kim, B. S.; Jang, C.; Lee, D. J.; Youn, S. W. Chem. Asian J. 2010, 5, 2336. https://doi.org/10.1002/asia.201000613
- Hennessy, E. J.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 12084. https://doi.org/10.1021/ja037546g
- Hwang, S. J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 16158. https://doi.org/10.1021/ja806897h
- Verrier, C.; Hoarau, C.; Marsais, F. Org. Biomol. Chem. 2009, 7, 647. https://doi.org/10.1039/b816374j
- Tremont, S. J.; Rahman, H. U. J. Am. Chem. Soc. 1984, 106, 5759. https://doi.org/10.1021/ja00331a073
- McCallum, J. S.; Gasdaska, J. R.; Liebeskind, L. S.; Tremont, S. J. Tetrahedron Lett. 1989, 30, 4085. https://doi.org/10.1016/S0040-4039(00)99328-6
- Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 6097. https://doi.org/10.1002/anie.200902262
- Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965. https://doi.org/10.1021/ja910900p
- Zhang, Y.; Feng, J.; Li, C.-J. J. Am. Chem. Soc. 2008, 130, 2900. https://doi.org/10.1021/ja0775063
- Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510. https://doi.org/10.1021/ja0701614
- Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 78. https://doi.org/10.1021/ja0570943
- Horino, H.; Inoue, N. J. Org. Chem. 1981, 46, 4416. https://doi.org/10.1021/jo00335a019
- Zaitsev, V. G.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 4156. https://doi.org/10.1021/ja050366h
- Houlden, C. E.; Bailey, C. D.; Ford, J. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2008, 130, 10066. https://doi.org/10.1021/ja803397y
- Rauf, W.; Thompson, A. L.; Brown, J. M. Chem. Commun. 2009, 3874.
- Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302. https://doi.org/10.1038/nchem.246
- Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 17050. https://doi.org/10.1021/ja906935c
Cited by
- Recent Advances in Transition Metal-Catalyzed Methylation Reactions vol.357, pp.7, 2015, https://doi.org/10.1002/adsc.201400984
- Nickel-Catalyzed Methylation of Aryl Halides with Deuterated Methyl Iodide vol.128, pp.33, 2016, https://doi.org/10.1002/ange.201604406
- Phenyltrimethylammonium Salts as Methylation Reagents in the Nickel-Catalyzed Methylation of C−H Bonds vol.128, pp.9, 2016, https://doi.org/10.1002/ange.201511197
- Palladium-catalysed direct C-2 methylation of indoles vol.14, pp.31, 2016, https://doi.org/10.1039/C6OB01281G
- Phenyltrimethylammonium Salts as Methylation Reagents in the Nickel-Catalyzed Methylation of C−H Bonds vol.55, pp.9, 2016, https://doi.org/10.1002/anie.201511197
- Palladium-Catalyzed C–H Activation: Mass Spectrometric Approach to Reaction Kinetics in Solution vol.36, pp.11, 2017, https://doi.org/10.1021/acs.organomet.6b00960
- The role of trinuclear species in a palladium acetate/trifluoroacetic acid catalytic system vol.46, pp.46, 2017, https://doi.org/10.1039/C7DT03832A
- Palladium-catalyzed interannular meta-C–H arylation vol.53, pp.13, 2017, https://doi.org/10.1039/C7CC00110J
- The Nickel(II)-Catalyzed Direct Benzylation, Allylation, Alkylation, and Methylation of C–H Bonds in Aromatic Amides Containing an 8-Aminoquinoline Moiety as the Directing Group vol.88, pp.3, 2015, https://doi.org/10.1246/bcsj.20140387
- Palladium-Catalyzed Direct Methylation and Benzylation of Enamides Using Iodomethane and Benzyl Halides with Retention of Alkenyl Moiety pp.21935807, 2018, https://doi.org/10.1002/ajoc.201800535
- -methylation of arenes with methyl tosylate vol.5, pp.14, 2018, https://doi.org/10.1039/C8QO00438B
- Beyond Friedel and Crafts: Directed Alkylation of C−H Bonds in Arenes pp.14337851, 2019, https://doi.org/10.1002/anie.201806629
- Jenseits von Friedel und Crafts: dirigierte Alkylierung von C-H-Bindungen in Arenen pp.00448249, 2019, https://doi.org/10.1002/ange.201806629
- Ausgeprägte Methyleffekte in der Wirkstoff‐Forschung und der Bedarf an neuen C‐H‐Methylierungsreaktionen vol.125, pp.47, 2011, https://doi.org/10.1002/ange.201303207
- Profound Methyl Effects in Drug Discovery and a Call for New CH Methylation Reactions vol.52, pp.47, 2011, https://doi.org/10.1002/anie.201303207
- Synthesis and Comparative Studies of Cyclopalladated Complexes With Ortho C‒H Activation of Aromatic Rings Bearing Electron Donating and Electron Withdrawing Groups vol.45, pp.6, 2011, https://doi.org/10.1080/15533174.2013.862641
- Picolyl Functionalised Chelating N‐Heterocyclic Carbene Palladium Complexes: Synthesis and Catalytic Activity towards Suzuki Cross‐coupling in Water vol.1, pp.4, 2011, https://doi.org/10.1002/slct.201600069
- Dicumyl Peroxide as a Methylating Reagent in the Ni-Catalyzed Methylation of Ortho C–H Bonds in Aromatic Amides vol.18, pp.7, 2016, https://doi.org/10.1021/acs.orglett.6b00658
- Nickel‐Catalyzed Methylation of Aryl Halides with Deuterated Methyl Iodide vol.55, pp.33, 2011, https://doi.org/10.1002/anie.201604406
- Sulfonium Salts as Alkylating Agents for Palladium-Catalyzed Direct Ortho Alkylation of Anilides and Aromatic Ureas vol.20, pp.3, 2011, https://doi.org/10.1021/acs.orglett.7b03813
- Selective Methylation of Arenes: A Radical C−H Functionalization/Cross‐Coupling Sequence vol.130, pp.33, 2018, https://doi.org/10.1002/ange.201804628
- Selective Methylation of Arenes: A Radical C−H Functionalization/Cross‐Coupling Sequence vol.57, pp.33, 2018, https://doi.org/10.1002/anie.201804628
- Modular Dual-Tasked C-H Methylation via the Catellani Strategy vol.141, pp.40, 2019, https://doi.org/10.1021/jacs.9b07857
- Unactivated Alkyl Halides in Transition-Metal-Catalyzed C-H Bond Alkylation vol.11, pp.6, 2011, https://doi.org/10.1021/acscatal.0c05580
- Mechanochemical Solvent‐Free Catalytic C−H Methylation vol.133, pp.12, 2011, https://doi.org/10.1002/ange.202010202