• Title/Summary/Keyword: Chemical Structures

Search Result 3,560, Processing Time 0.03 seconds

Regiospecific Protein Perturbation on F NMR Shifts and Photoisomerization of Fluororhodopsins. An Interpretation Based on Recent Crystal Structures of Rhodopsin

  • Colmenares, Letica U.;Liu, Robert S.H.
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.81-87
    • /
    • 2003
  • Based on structural information provided by recently reported crystal structures of rhodopsin, we present rationales for the regiospecific protein perturbation on the previously reported $\^$19/F chemical shifts of the vinyl and trifluoromethylrhodopsins and their photoproducts. The crystal structures also suggest that H-bonding is a likely cause for the earlier reported regiospecific photoisomerization of the 10-fluororhodopsins. Photoisomerization was revealed by chemical shift of the photoproducts. Additionally, possible use of 3-bond F,F coupling constants for following photoisomerization of retinal-binding proteins is discussed.

  • PDF

The Anomalies of Supercooled Water

  • Yoon, Byoung-Jip;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.2
    • /
    • pp.82-86
    • /
    • 1984
  • The anomalous behaviors of supercooled water are explained by using a two-solid-like structure model in which an equilibrium is assumed between open structures and closed structures. Besides these structures, small fraction of monomer exists in liquid water. The anomalies of liquid water are classified into two groups: structural and energetic. The structural anomalies appear in enlarged fashions in a supercooled state where the free volume is small.

Pattern Formations with Turing and Hopf Oscillating Pattern in a Discrete Reaction-Diffusion System

  • Lee, Il Hui;Jo, Ung In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1213-1216
    • /
    • 2000
  • Localized structures with fronts connecting a Turing patterns and Hopf oscillations are found in discrete reaction-diffusion system. The Chorite-Iodide-Malonic Acid (CIMA) reaction model is used for a reaction scheme. Localized structures in discrete reaction-diffusion system have more diverse and interesting features than ones in continuous system. Various localized structures can be obtained when a single perturbation is applied with variation of coupling strength of two intermediates. Roles of perturbations are not so simple that perturbations are sources of both Turing patterns and Hopf oscillating domains, and spatial distribution of them is determined by strength of a perturbation applied initially.

Structures and Spectroscopic Properties of $OC_nO$ (n=2-6): Density Functional Theory Study

  • 김경환;이보순;이성열
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.553-557
    • /
    • 1998
  • Density functional theory calculations are reported for the carbon clusters bonded with two oxygen atoms $OC_No$ (n=2-6). The structures, vibrational frequencies and dipole moments are computed by BLYP theory with the 6-311G* basis set. Good agreement is obtained between the computed and experimentally observed properties. The ground states of these molecules are shown to be linear. Cyclic structures with higher energy are also predicted.

Structural and Bonding Trends among the B7C11-,B6C2, and B5C31+

  • Park, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.63-71
    • /
    • 2005
  • Equilibrium geometries, electronic structures, and energies of borocarbon clusters (binary compounds of carbon and boron), an unexplored class of molecules with highly unusual characteristics and potential for further development, have been investigated by means of B3LYP/6-311+G$^*$ density functional theory computations. A large number of B$_7$C${_1}^{1-}$, B$_6C_2$, and B$_5C_{3}\,^{1+}$ clusters with planar and non-planar monocyclic and polycyclic rings, as well as cage structures, have been systematically studied. Unexpectedly, planar forms are predicted not only to be the most stable structures, but also, in many cases, to have unprecedented planar heptacoordinate boron (p-heptaB) and planar heptacoordinate carbon (p-heptaC) arrangements. All these pheptaB and p-heptaC have 6π electrons and are aromatic according to the nucleus independent chemical shift (NICS). This novel bonding pattern is analyzed in terms of natural bond orbital (NBO) analysis. For virtually all possible B$_7$C${_1}^{1-}$, B$_6C_2$, and B$_5C_{3}\,^{1+}$ combinations, the p-heptaB arrangements are the more stable than other type structures.

Computer Graphics / Molecular Mechanics Studies of Quinolones Geometry Comparison with X-ray Crystal Structures

  • Chung, Sung-Kee;Daniel, F. chodosh
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.313-317
    • /
    • 1990
  • Geometries for several representative quinolone carboxylate type antibacterials have been calculated by computer graphics/molecular mechanics energy minimization procedures using both MM2 and AMBER force fields. The calculated geometries were found to be in reasonable agreements with the corresponding X-ray crystal structures. It has been pointed out that notwithstanding the weaknesses associated with calculating the resonance and hydrogen bonding contributions, the employed methods are capable of generating credible ring geometries and torsional angle dispositions of N(1)-ethyl and 3-carboxylate substituents of the quinolones.

Fabrication of GaN Ring Structure with Broad-band Emission Using MOCVD and Wet Etching Techniques

  • Sim, Young-Chul;Lim, Seung-Hyuk;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.243.1-243.1
    • /
    • 2016
  • Recently, many groups have attempted to fabricate 3-dimensional (3D) structures of GaN such as pyramids, rods, stripes and annulars. Since quantum structures on non-polar and semi-polar planes of 3D structures have less influence of internal electric filed, multi quantum wells (MQWs) formed on those planes have high quantum efficiency. Especially, pyramidal and annular structures consist of various crystal planes with different emission wavelength, providing a possibillity of phosphor-free white light emtting diodes (WLEDs).[1] However, it still has problem to obtain high color rendering index (CRI) number because of narrow-band emission and poor indium composition caused by the formation of few number of facets during metal-organic chemical vapor deposition growth.[2] If we can fabricate 3D structure having more various facets, we can make broad-band emittied WLEDs and improve CRI number. In this study, we suggest a simple method to fabricate 3D structures having various facet and containing high indium composition by means of a combination of metal-organic chemical vapor deposition and wet chemical etching techniques.

  • PDF

Three Crystal Structures of Dehydrated $Cd^{2+}$ and $Rb^+$ Exchanged Zeolite A, $Cd_xRb_{12-2x}-A,$ x=4.0, 5.0 and 5.95

  • Song, Yeong-Sim;Kim, Un-Sik;Kim, Yang;Kim, Duk-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.328-331
    • /
    • 1990
  • Three crystal structures of dehydrated Cd(II) and Rb(I) exchanged zeolite A, $Cd_{4.0}Rb_{4.0}-A (a = 12.204(3) {\AA}), Cd_{5.0}Rb_{2.0}-A (a = 12.202(1) {\AA}),$ and $Cd_{5.95}Rb_{0.1}-A (a = 12.250(2) {\AA}),$ have been determined by single-crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at $21(1)^{\circ}C.$ All crystals were ion exchanged in flowing streams of mixed $Cd(NO_3)_2·4H_2O$ and $RbNO_3$ aqueous solution with total concentration of 0.05 M. All crystals were dehydrated at ca. $450^{\circ}C$ and $2×10^{-6}$ Torr for 2 days. In all of these structures, $Cd^{2+}$ ions are found on threefold axes, each nearly at the center of a 6-oxygen ring. The first three $Rb^+$ ions per unit cell preferentially associate with 8-oxygen rings, and additional $Rb^+$ ions, if present, are found on threefold axes in the large cavity. The final $R_1$ and $R_2$ values for the three structures are 0.087 and 0.079, 0.059 and 0.067, and 0.079 and 0.095, respectively.