DOI QR코드

DOI QR Code

Structural and Bonding Trends among the B7C11-,B6C2, and B5C31+

  • Park, Sung-Soo (Department of Physics, Atmospheric Sciences, and General Science, Jackson State University)
  • Published : 2005.01.20

Abstract

Equilibrium geometries, electronic structures, and energies of borocarbon clusters (binary compounds of carbon and boron), an unexplored class of molecules with highly unusual characteristics and potential for further development, have been investigated by means of B3LYP/6-311+G$^*$ density functional theory computations. A large number of B$_7$C${_1}^{1-}$, B$_6C_2$, and B$_5C_{3}\,^{1+}$ clusters with planar and non-planar monocyclic and polycyclic rings, as well as cage structures, have been systematically studied. Unexpectedly, planar forms are predicted not only to be the most stable structures, but also, in many cases, to have unprecedented planar heptacoordinate boron (p-heptaB) and planar heptacoordinate carbon (p-heptaC) arrangements. All these pheptaB and p-heptaC have 6π electrons and are aromatic according to the nucleus independent chemical shift (NICS). This novel bonding pattern is analyzed in terms of natural bond orbital (NBO) analysis. For virtually all possible B$_7$C${_1}^{1-}$, B$_6C_2$, and B$_5C_{3}\,^{1+}$ combinations, the p-heptaB arrangements are the more stable than other type structures.

Keywords

References

  1. Rao, B. K.; Jena, P. Phys. Rev. B 1985, 32, 2058 https://doi.org/10.1103/PhysRevB.32.2058
  2. Hira, S.; Ray, A. K. Surf. Sci. 1991, 249, 199 https://doi.org/10.1016/0039-6028(91)90845-J
  3. Aselage, T. L.; Emin, D.; McCready, S. S.; Duncan, R. V. Phys. Rev. Lett. 1998, 81, 2316 https://doi.org/10.1103/PhysRevLett.81.2316
  4. Hall, H. T.; Compton, L. A. Inorg. Chem. 1965, 4, 1213 https://doi.org/10.1021/ic50030a027
  5. Han, S.; Ihm, J.; Louie, S. G.; Cohen, L. Phys. Rev. Lett. 1999, 80, 995
  6. Ulrich, S.; Ehrhardt, H.; Schwan, J.; Samlenski, R.; Brenn, R. J. Diamond Relat. Mater. 1998, 7, 835 https://doi.org/10.1016/S0925-9635(97)00306-3
  7. McColm, I. J. Ceramic Hardness; Plenum: New York, 1990
  8. Joly, A.; Hebd, C. R. Seances Acad. Sci. 1883, 97, 456
  9. Rigdway, R. R. Trans. Am. Electrochem. Soc. 1934, 66, 117 https://doi.org/10.1149/1.3498064
  10. Mauri, F.; Vast, N.; Pickard, C. J. Phys. Rev. Lett. 2001, 87, 085506-1 https://doi.org/10.1103/PhysRevLett.87.085506
  11. Lazzari, R.; Vast, N.; Besson, J. M.; Baroni, S.; Corso, A. D. Phys. Rev. Lett. 1999, 83, 3230 https://doi.org/10.1103/PhysRevLett.83.3230
  12. Jansson, U.; Carlsson, J. Thin Solid Films 1985, 124, 101 https://doi.org/10.1016/0040-6090(85)90251-2
  13. Sezer, A. O.; Brand, J. I. Mater. Sci. Engin. B 2001, 79, 191 https://doi.org/10.1016/S0921-5107(00)00538-9
  14. Becker, S.; Dietze, H.-J. Int. J. Mass Spectrum Ion Proc.1986, 73, 157
  15. Becker, S.; Dietze, H.-J. Int. J. Mass Spectrum Ion Proc. 1988, 82, 287
  16. Wang, C.; Huang, R.; Liu, Z.; Zheng, L. Chem. Phys. Lett. 1995, 242, 355 https://doi.org/10.1016/0009-2614(95)00750-X
  17. Kimura, T.; Sugai, T.; Shinohara, H. Chem. Phys. Lett. 1996, 256, 269 https://doi.org/10.1016/0009-2614(96)00436-8
  18. Becker, S.; Dietze, H.-J. J. Anal. Chem. 1997, 359, 338
  19. Verhaegen, G.; Stafford, F. E.; Drowart, J. J. Chem. Phys. 1964, 40, 1622 https://doi.org/10.1063/1.1725370
  20. Martin, J. M. L.; Taylor, P. R.; Yustein, J. T.; Burkholder, T. R.; Andrew, L. J. Chem. Phys. 1993, 99, 12 https://doi.org/10.1063/1.465792
  21. Easley, W. C.; Weltner, W. J. Chem. Phys. 1970, 52 , 1489 https://doi.org/10.1063/1.1673156
  22. Knight, L. B.; Cobranchi, S. T.; Petty, J. T.; Earl, E.; Feller, D.; Davidson, E. R. J. Chem. Phys. 1989, 90, 690 https://doi.org/10.1063/1.456148
  23. Knight, L. B.; Cabranchi, S.; Earl, E. J. Chem. Phys. 1996, 104, 4927
  24. Presilla-Marquez, J. D.; Larson, C. W.; Carrick, P. G.; Rittby, C. M. L. J. Chem. Phys. 1996, 99, 12
  25. Wyss, M.; Grutter, M.; Maier, J. P. J. Phys. Chem. 1998, 102, 9106 https://doi.org/10.1021/jp9830530
  26. Presilla-Marquez, J. D.; Carrick, P. G.; Larson, C. W. J. Chem. Phys. 1999, 110, 5702
  27. Kouba, J. E.; Ohrn, Y. J. Chem. Phys. 1970, 53, 3923 https://doi.org/10.1063/1.1673861
  28. Hirsch, G.; Buenker, R. J. J. Chem. Phys. 1988, 87, 6004 https://doi.org/10.1063/1.453524
  29. Oliphant, N.; Adamowicz, L. Chem. Phys. Lett. 1990, 168, 126 https://doi.org/10.1016/0009-2614(90)85116-T
  30. Fernando, W. T. M. L.; O'Brien, L. C.; Bernath, P. F. J. Chem Phys. 1990, 93, 8482 https://doi.org/10.1063/1.459287
  31. Martin, J. M. L.; Taylor, P. R. J. Chem. Phys. 1994, 100, 9002 https://doi.org/10.1063/1.466704
  32. Zhan, C. G.; Iwata, S. J. Phys. Chem. 1997, 101, 591 https://doi.org/10.1021/jp9619494
  33. Leonard, C.; Rosmus, P.; Wyss, M.; Maier, J. P. Phys. Chem. Chem. Phys. 1999, 1, 1827 https://doi.org/10.1039/a901069f
  34. Ge, F. M.; Huang, X.; Feng, J.; Yang, C.; Sun, C. Chem. J. Chinese Univ. 1997, 18, 1838
  35. Comeau, M.; Leleyter, M.; Leclercq, J.; Pastoli, G. Am. Inst. Phys. Conf. Proc. 1994, 312, 605
  36. Havenith, R. W. A.; Fowler, P. W.; Steiner, E. Chem. Eur. J. 2002, 8, 1068 https://doi.org/10.1002/1521-3765(20020301)8:5<1068::AID-CHEM1068>3.0.CO;2-Z
  37. Exner, K.; Schleyer, P. v. R. Science 2000, 290, 1937 https://doi.org/10.1126/science.290.5498.1937
  38. Gribanova, T. N.; Minyaev, R. M.; Minkin, V. I. Mendeleev Commun. 2001, 169
  39. Wang, Z.-X.; Schleyer, P. v. R. Science 2001, 292, 2465
  40. Gribanova, T. N.; Minyaev, R. M.; Starikov, A. G.; Minkin, V. I. Dokl. Akad. Nauk. 2002, 382, 785
  41. Minkin, V. I.; Minyaev, R. M.; Hoffmann, R. Russ. Chem. Rev. 2002, 71, 869 https://doi.org/10.1070/RC2002v071n11ABEH000729
  42. Pascoli, G.; Lavendy, H. Eur. Phys. J. D 2002, 19, 339
  43. Kato, H.; Tanaka, E. J. Comput. Chem. 1991, 12, 1097 https://doi.org/10.1002/jcc.540120907
  44. Ray, A. K.; Howard, I. A.; Kanal, K. M. Phys. Rev. B 1992, 45, 14247
  45. Kato, H.; Yamashita, K.; Morokuma, K. Chem. Phys. Lett. 1992, 190, 361 https://doi.org/10.1016/0009-2614(92)85352-B
  46. Boustani, I. Chem. Phys. Lett. 1995, 240, 135
  47. Boustani, I. Chem. Phys. Lett. 1995, 233, 273 https://doi.org/10.1016/0009-2614(94)01449-6
  48. Ricca, A.; Bauschlicher, Jr., C. W. Chem. Phys. Lett. 1996, 208, 233
  49. Ricca, A.; Bauschlicher, Jr., C. W. J. Chem. Phys. 1997, 106, 2317 https://doi.org/10.1063/1.473856
  50. Sowa-Resat, M. B.; Smolanoff, J.; Lapicki, A.; Anderson, S. L. J. Chem. Phys. 1997, 106, 9551
  51. Boustani, I. Phys. Rev. B 1997, 55, 16426
  52. Reis, H.; Papadopoulos, M. G.; Boustani, I. Int. J. Quant. Chem. 2000, 78, 131 https://doi.org/10.1002/(SICI)1097-461X(2000)78:2<131::AID-QUA6>3.0.CO;2-3
  53. Aihara, J. J. Phys. Chem. A 2001, 105, 5486 https://doi.org/10.1021/jp010190f
  54. Li, Q. S.; Jin, H. W. J. Phys. Chem. A 2002, 106, 7042 https://doi.org/10.1021/jp025746t
  55. Abdurahman, A.; Shukla, A.; Seifert, G. Phys. Rev. B 2002, 66, 155423
  56. vat't Hoff, J. H. Arch. Neerl. Sci. Exactes Nat. 1874, 445
  57. Label, J. A. Bull. Soc. Chim. Fr. 1874, 22, 337
  58. Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. v. R.; Seeger, R.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 5419 https://doi.org/10.1021/ja00434a001
  59. Luef, W.; Keese, R. Adv. Strain Org. Chem. 1993, 3, 229
  60. Sorger, K.; Schleyer, P. v. R. J. Mol. Struct. 1995, 338, 317 https://doi.org/10.1016/0166-1280(95)04233-V
  61. Rottger, D.; Erker, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 812 https://doi.org/10.1002/anie.199708121
  62. Radom, L.; Rasmussen, D. R. Pure Appl. Chem. 1998, 70, 1977 https://doi.org/10.1351/pac199870101977
  63. Boldyrev, A. I.; Simons, J. J. Am. Chem. Soc. 1998, 120, 7967 https://doi.org/10.1021/ja981236u
  64. Siebert, W.; Gunale, A. Chem. Soc. Rev. 1999, 28, 367 https://doi.org/10.1039/a801225c
  65. Choukroun, R.; Cassoux, P. Acc. Chem. Res. 1999, 32, 494 https://doi.org/10.1021/ar970304z
  66. Wang, L.-S.; Boldyrev, A. I.; Li, X.; Simons, J. J. Am. Chem. Soc. 2000, 122, 7681
  67. Wang, Z.-X.; Schleyer, P. v. R. Org. Lett. 2001, 3, 1249
  68. Wang, Z.-X.; Schleyer, P. v. R. J. Am. Chem. Soc. 2001, 123, 994
  69. Wang, Z.-X.; Schleyer, P. v. R. J. Am. Chem. Soc. 2002, 124, 11979
  70. Huang, J.; Luci, J. J.; Lee, T.; Swenson, D. C.; Jensen, J. H.; Messerle, L. J. Am. Chem. Soc. 2003, 125, 1688 https://doi.org/10.1021/ja020369j
  71. Olah, G. A.; White, A. M.; O'Brien, D. H. Chem. Rev. 1970, 70, 561 https://doi.org/10.1021/cr60267a003
  72. Olah, G. A.; Rasul, G. Acc. Chem. Res. 1997, 30, 245 https://doi.org/10.1021/ar960103f
  73. Schleyer, P. v. R.; Würthwein, E.-U.; Kaufmann, E.; Clark, T.; Pople, J. A. J. Am. Chem. Soc. 1983, 105, 5930
  74. Kudo, H. Nature 1992, 355, 432 https://doi.org/10.1038/355432a0
  75. Scherbaum, F.; Grohmann, A.; Müller, G.; Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1989, 28, 463 https://doi.org/10.1002/anie.198904631
  76. Olah, G. A.; Rasul, G. J. Am. Chem. Soc. 1996, 118, 8503 https://doi.org/10.1021/ja961081v
  77. Schleyer, P. v. R.; Najafian, K. Inorg. Chem. 1998, 37, 3454 https://doi.org/10.1021/ic980110v
  78. Akiba, K.; Yamashita, M.; Yamamoto, Y.; Nagase, S. J. Am. Chem. Soc. 1999, 121, 10644 https://doi.org/10.1021/ja981721p
  79. Wang, Z.-X.; Schleyer, P. v. R. Angew. Chem. Int. Ed. 2002, 41, 4082
  80. Hoffmann, R.; Alder, R. W.; Wilcox, C. F., Jr. J. Am. Chem. Soc. 1970, 92, 4992 https://doi.org/10.1021/ja00719a044
  81. Hoffmann, R. Pure Appl. Chem. 1971, 28, 181 https://doi.org/10.1351/pac197128020181
  82. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I. R.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al- Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.5; Gaussian, Inc.: Pittsburgh, PA, 1998
  83. Becke, A. D. J. Chem. Phys. 1993, 98, 5648 https://doi.org/10.1063/1.464913
  84. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785 https://doi.org/10.1103/PhysRevB.37.785
  85. Gauss, J. In The Encyclopedia of Computational Chemistry; Schleyer, P. v. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer, H. F., III, Schreiner, P. R., Eds.; John Wiley & Chichester: 1998; Vol. 1, pp 615
  86. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E. J. Am. Chem. Soc. 1996, 118, 6317 https://doi.org/10.1021/ja960582d
  87. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899 https://doi.org/10.1021/cr00088a005
  88. Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989; pp 95- 98
  89. Reid, C. J. Int. J. Mass Spectrum Ion Proc.1993, 127, 147
  90. Hanley, L.; Whitten, J. L.; Anderson, S. L. J. Phys. Chem. 1988, 92, 5803 https://doi.org/10.1021/j100331a052
  91. Orden, A. V.; Saykally, R. J. Chem. Rev. 1998, 98, 2313 https://doi.org/10.1021/cr970086n
  92. Ditchfield, R. Mol. Phys. 1974, 27, 789 https://doi.org/10.1080/00268977400100711
  93. Wolinski, K.; Hilton, J. F.; Pulay, P. J. Am. Chem. Soc. 1982, 104, 5667 https://doi.org/10.1021/ja00385a019
  94. Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497 https://doi.org/10.1063/1.471789
  95. Park, S. S.; Lee, K. H.; Suh, Y.; Lee, C.; Luthi, H. P. Bull. Korean Chem. Soc. 2002, 23, 241 https://doi.org/10.1007/BF02705723

Cited by

  1. and Its Cation vol.133, pp.34, 2011, https://doi.org/10.1021/ja203682a
  2. = 1−7) clusters vol.113, pp.23, 2013, https://doi.org/10.1002/qua.24491
  3. Double Aromaticity in Monocyclic Carbon, Boron, and Borocarbon Rings Based on Magnetic Criteria vol.13, pp.16, 2005, https://doi.org/10.1002/chem.200700154
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  5. On the geometries, stabilities, and potential energy surfaces of planar C4B2 and C2B4 vol.967, pp.1, 2005, https://doi.org/10.1016/j.comptc.2011.03.043
  6. Vier Jahrzehnte Chemie der planar hyperkoordinierten Verbindungen vol.127, pp.33, 2015, https://doi.org/10.1002/ange.201410407
  7. Four Decades of the Chemistry of Planar Hypercoordinate Compounds vol.54, pp.33, 2015, https://doi.org/10.1002/anie.201410407
  8. Analysis of Conformational, Structural, Magnetic, and Electronic Properties Related to Antioxidant Activity: Revisiting Flavan, Anthocyanidin, Flavanone, Flavonol, Isoflavone, Flavone, and Flavan-3-ol vol.6, pp.13, 2005, https://doi.org/10.1021/acsomega.0c06156