• Title/Summary/Keyword: Chemical Reactor

Search Result 1,549, Processing Time 0.025 seconds

Hydrolysis of Cellulose by Immobilized Cellulase in a Packed Bed Reactor (충진층 반응기에서 고정화 cellulase에 의한 셀룰로스 가수 분해)

  • Kang, Byung Chul;Lee, Jong Baek
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1365-1370
    • /
    • 2013
  • Immobilized cellulase on weak ion exchange resin showed a typical Langmuir adsorption isotherm. Immobilized cellulase had better stability with respect to pH and temperature than free cellulase. Kinetics of thermal inactivation on free and immobilized cellulase followed first order rate, and immobilized cellulase had a longer half-life than free cellulase. The initial rate method was used to characterize the kinetic parameters of free and immobilized enzyme. The Michaelis-Menten constant $K_m$ was higher for the immobilized enzyme than it was for the free enzyme. The effect of the recirculation rate on cellulose degradation was studied in a recycling packed-bed reactor. In a continuous packed-bed reactor, the increasing flow rate of cellulose decreased the conversion efficiency of cellulose at different input lactose concentrations. Continuous operation for five days was conducted to investigate the stability of long term operation. The retained activity of the immobilized enzymes was 48% after seven days of operation.

The study on the methane activation by a plasma (플라즈마 반응에 의한 메탄 활성화에 관한 연구)

  • Cho Won Ihl;Baek Young Soon;Kim Byung Il;Kim Young Chai
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.60-69
    • /
    • 1998
  • Methane, the major constituent of natural gas, had been converted to higher hydrocarbons by microwave and radio-frequency plasma in vacuum condition. Methane had been activated to plasma by suppling high energy then converted to ethane, ethylene, acetylene. The direct conversion process of methane had produced few by-products and demanded low-energy. The plasma sources were microwave and radio-frequency. Two types of reactor had been used to activate methane. One is common single tubular-type reactor and the other is series coil-type reactor which used for the first time in this study. To produce more C2 products, methane had been converted by a plasma and catalyst. The results of this study could be used to study mechanism of plasma reaction of methane, design the plant-scale reactor.

  • PDF

Investigation on Performance Analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor (소듐냉각고속로 원형로 소듐-물 반응 압력완화계통 성능 해석 연구)

  • Park, Sun Hee;Han, Ji-Woong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.28-41
    • /
    • 2019
  • We carried out performance analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor. We analyzed transient-dynamic behavior of fluids inside the steam generator to vent into a sodium dump tank or a water dump tank when tubes in the steam generator were broken to cause a large-water-leak accident. Accordingly, we preliminarily evaluated design requirements of our system. Our results showed that sodium in the shell side of the steam generator and in Intermediate Heat Transport System was completely vented within 50 s and feed water in the tube side of the steam generator was completely vented within 2.5 s. It was analyzed that pressure of the tube side of the steam generator was higher than pressure of the shell side of the steam generator, which showed that sodium in the shell side did not flow into the tube side. Our results are expected to be used as basis information to performance analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor.

Conversion Characteristics of CH4 and CO2 in an Atmospheric Pressure Plasma Reactor (대기압 플라즈마 반응기에서의 CH4와 CO2의 전환처리 특성)

  • Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.653-657
    • /
    • 2011
  • Conversion characteristics of $CH_4$ and $CO_2$ was studied using an atmospheric pressure plasma for the preparation of synthesis gas composed of $H_2$ and CO. The effects of delivered power, total gas flow rate, and gas residence time in the reactor on the conversion of $CH_4$ and $CO_2$ were evaluated in a plasma reactor with the type of dielectric barrier discharge. The increase of reactor temperature did not affect on the increase of conversion if the temperature does not reach to the appropriate level. The conversion of $CH_4$ and $CO_2$ largely increased with increasing the delivered power. As the $CH_4/CO_2$ ratio increased, the $CH_4$ conversion decreased, whereas the $CO_2$ conversion increased. Generally, the $CH_4$ convesion was higher than the $CO_2$ conversion through the variation of the process parameters.

Characteristics of Electrical Properties, Ozone Generation and Decomposition of Volatile Organic Compounds by Nonthermal Plasma Reactor Packed with SBT Ferroelectric (SBT 강유전체 충전층 저온 플라즈마 반응기의 전기적 특성, 오존생성 및 휘발성유기화합물의 분해)

  • Eo, Joon;Kim, Il Won;Park, Jin Do;Lee, Joo Young;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.249-254
    • /
    • 2011
  • A nonthermal plasma reactor in conjunction with a tubular type with a ferroelectric (high-dielectric ceramic) pellet layer was designed and constructed. $SrBiTaO_9$ (SBT) pellets with 2.0 mm in diameter were held within the tube arrangement by two metal mesh electrodes (20 mm separation) connected to a high-voltage AC power supply. The dielectric constant of SBT pellets was 150 at room temperature and 500 at curie temperature ($335^{\circ}C$). The generation rate of ozone in the plasma reactor almost linearly increased with increasing applied voltage. In the case of the plasma reactor packed with SBT pellets the generation rate of ozone sharply increased at the applied voltage more than 20 kV. The ozone generation rate at the negative corona discharge was higher than that of the positive corona discharge. However, the destruction efficiency of toluene and methylene chloride was not increased in proportion to ozone concentration.

Improved Kerosene Quality with the Use of a Gamma Alumina Nanoparticles Supported Zinc Oxide Catalyst in a Digital Batch Baffled Reactor: Experiments and Process Modelling

  • Jasim I. Humadi;Ghassan Hassan Abdul Razzaq;Ghassan Hassan Abdul Razzaq;Mustafa A. Ahmed;Liqaa I. Saeed
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.226-233
    • /
    • 2023
  • To create an environmentally sustainable fuel with a low sulfur concentration, requires alternative sulfur removal methods. During the course of this study, a high surface gamma alumina-supported ZnO nanocatalyst with a ZnO/-Al2O3 ratio of 12% was developed and tested for its ability to improve the activity of the oxidative desulfurization (ODS) process for the desulfurization of kerosene fuel. Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) were used to characterize the produced nanocatalyst. In a digital batch baffled reactor (20~80 min), the effectiveness of the synthesized nanocatalyst was tested at different initial concentrations of dibenzothiophene (DBT) of 300~600 ppm, oxidation temperatures (25~70 ℃), and oxidation periods (0.5, 1, and 2 hours). The baffles included in the digital baffled batch reactor resist the swirling of the reaction mixture, thus facilitating mixing. The ODS procedure yielded the maximum DBT conversion (95.5%) at 70 ℃ with an 80-minute reaction time and an initial DBT level of 600 ppm. The most precise values of kinetic variables were subsequently determined using a mathematical modelling procedure for the ODS procedure. The average absolute error of the simulation findings was less than 5%, demonstrating a good degree of agreement with the experimental results acquired from all runs. The optimization of the operating conditions revealed that 99.1% of the DBT can be removed in 140 minutes.

Nanosulfated Silica as a Potential Heterogeneous Catalyst for the Synthesis of Nitrobenzene

  • Khairul Amri;Aan Sabilladin;Remi Ayu Pratika;Ari Sudarmanto;Hilda Ismail;Budhijanto;Mega Fia Lestari;Won-Chun Oh;Karna Wijaya
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.265-272
    • /
    • 2023
  • In this study, the synthesis of nitrobenzene was carried out using sulfated silica catalyst. The study delved into H2SO4/SiO2 as a solid acid catalyst and the effect of its weight variation, as well as the use of a microwave batch reactor in the synthesis of nitrobenzene. SiO2 was prepared using the sol-gel method from TEOS precursor. The formed gel was then refluxed with methanol and calcined at a temperature of 600 ℃. SiO2 with a 200-mesh size was impregnated with 98 % H2SO4 by mixing for 1 h. The resulting 33 % (w/w) H2SO4/SiO2 catalyst was separated by centrifugation, dried, and calcined at 600 ℃. The catalyst was then used as a solid acid catalyst in the synthesis of nitrobenzene. The weights of catalyst used were 0.5; 1; and 1.5 grams. The synthesis of nitrobenzene was carried out with a 1:3 ratio of benzene to nitric acid in a microwave batch reactor at 60 ℃ for 5 h. The resulting nitrobenzene liquid was analyzed using GC-MS to determine the selectivity of the catalyst. Likewise, the use of a microwave batch reactor was found to be appropriate and successful for the synthesis of nitrobenzene. The thermal energy produced by the microwave batch reactor was efficient enough to be used for the nitration reaction. Reactivity and selectivity tests demonstrated that 1 g of H2SO4/SiO2 could generate an average benzene conversion of 40.33 %.

Flow Analysis of the Environmental Chemical Reaction Processes at Power Plant in accordance with the Baffle Structure

  • Jeong, Yeon-Tae;Hur, Kwang-Beom;Gil, Joon-Woo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.433-436
    • /
    • 2016
  • In the area of environmental chemistry of power plant, flow analysis of the reactor with built-in impeller is a very important part from the perspective of the improvement of the efficiency of the entire process. As a wide range of methods are being proposed for the analysis of the flow pattern within the reactor, this study analyzed the flow within the reactor according to the baffle structure (height) installed on the internal wall of the reactor in order to improve the reaction efficiency through the inducing of the up and down stirring with the reactor. As the results of the execution of the flow analysis for each of a diverse range of cases by utilizing the Computational Fluid Dynamics (CFD) method, it was possible to confirm that the flow is markdely improved by inducing the up and down stirring among the reactants within the reactor if the baffle is elevated to the level below the water surface. In particular, as the results of the analysis of the general cases in which the baffle is elevated all 4 steps and the cases in which the baffle is elevated only 2 steps, elevating the baffle only 2 steps achieve the same effect as the elevating of the baffle by 4 steps. Therefore, it was possible to expect to improve the efficiency with out the need to increase the use of electric power substantially if the outcomes of this study is applied to the actual sites of power plants in the future.

Numerical Study on the Performance and the Heat Flux of a Coaxial Cylindrical Steam Reformer for Hydrogen Production (수소 생산을 위한 동축원통형 수증기 개질기의 성능 및 열유속에 대한 수치해석 연구)

  • Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Myoung-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.709-717
    • /
    • 2009
  • Heat transfer rate is a very important factor for the performance of a steam reformer because a steam reforming reaction is an endothermic reaction. Coaxial cylindrical reactor is the reactor design which can improve the heat transfer rate. Temperature, fuel conversion and heat flux in the coaxial cylindrical steam reformer are studied in this paper using numerical method under various operating conditions. Langmuir-Hinshelwood model and pseudo-homogeneous model are incorporated for the catalytic surface reaction. Dominant chemical reactions are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming (DSR) reaction. Although coaxial cylindrical steam reformer uses 33% less amount of catalyst than cylindrical steam reformer, its fuel conversion is increased 10 % more and its temperature is also high as about 30 degree. There is no heat transfer limitation near the inlet area at coaxial-type reactor. However, pressure drop of the coaxial cylindrical reactor is 10 times higher than that of cylindrical reactor. Operating parameters of coaxial cylindrical steam reformer are the wall temperature, the inlet temperature, and the Gas Hourly Space Velocity (GHSV). When the wall temperature is high, the temperature and the fuel conversion are increased due to the high heat transfer rate. The fuel conversion rate is increased with the high inlet temperature. However, temperature drop clearly occurs near the inlet area since an endothermic reaction is active due to the high inlet temperature. When GHSV is increased, the fuel conversion is decreased because of the heat transfer limitation and short residence time.

Improvement of adhesion strength of Butadiene Rubber using Atmospheric Plasma (대기압 플라즈마를 이용한 부타디엔고무 소재의 접착력 개선)

  • Seul, Soo Duk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.556-560
    • /
    • 2010
  • An atmospheric surface modification using plasma treatment method was applied to butadiene rubber to improve its adhesion strength by plate type reactor. In order to investigate the optimum reaction condition of plasma treatment, type of reaction gas(nitrogen, argon, oxygen, air), gas flow rate(30~100 mL/min), treated time(0~30 s) and primer modification method(GMA, 2-HEMA) were examined in a plate type plasma reactor. The results of the surface modification with respect to the treatment procedure was characterized by using SEM and ATR-FTIR. As the gas flow rate and treated time increases the contact angle decreases. The greatest adhesion strength was achieved at optimum condition such as flow rate of 60 mL/min, treated time 5 s and modification primer containing 2-HEMA for air. Due to the atmospheric surface modification using plate plasma method consequently reduced the wettability of butadiene rubber and resulted in the improvement of the adhesion.