• Title/Summary/Keyword: Chemical Non-Equilibrium

Search Result 104, Processing Time 0.023 seconds

Molecular Dynamics Simulation Study for Transport Properties of Diatomic Liquids

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1697-1704
    • /
    • 2007
  • We present results for transport properties of diatomic fluids by isothermal-isobaric (NpT) equilibrium molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. As the molecular elongation of diatomic molecules increases from the spherical monatomic molecule, the diffusion coefficient increases, indicating that longish shape molecules diffuse more than spherical molecules, and the rotational diffusion coefficients are almost the same in the statistical error since random rotation decreases. The calculated translational viscosity decreases with the molecular elongation of diatomic molecule within statistical error bar, while the rotational viscosity increases. The total thermal conductivity decreases as the molecular elongation increases. This result of thermal conductivity for diatomic molecules by EMD simulations is again inconsistent with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations even though the missing terms related to rotational degree of freedom into the Green-Kubo and Einstein formulas with regard to the calculation of thermal conductivity for molecular fluids are included.

Predictive Modeling of Competitive Biosorption Equilibrium Data

  • Chu K.H.;Kim E.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.67-71
    • /
    • 2006
  • This paper compares regression and neural network modeling approaches to predict competitive biosorption equilibrium data. The regression approach is based on the fitting of modified Langmuir-type isotherm models to experimental data. Neural networks, on the other hand, are non-parametric statistical estimators capable of identifying patterns in data and correlations between input and output. Our results show that the neural network approach outperforms traditional regression-based modeling in correlating and predicting the simultaneous uptake of copper and cadmium by a microbial biosorbent. The neural network is capable of accurately predicting unseen data when provided with limited amounts of data for training. Because neural networks are purely data-driven models, they are more suitable for obtaining accurate predictions than for probing the physical nature of the biosorption process.

NUMERICAL SIMULATION OF THERMOCHEMICAL NON-EQUILIBRIUM FLOW AROUND BLUNT BODIES CONSIDERING CATALYTIC WALL EFFECTS (촉매벽 효과를 고려한 무딘 물체 주위의 열화학적 비평형 유동에 대한 수치적 연구)

  • Kim, J.W.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.87-93
    • /
    • 2013
  • A computational study has been performed to examine the effects of catalytic walls on the stagnation region heat transfer. The boundary conditions for none, finite, and fully catalytic walls have been incorporated into a multi-block compressible Navier-Stokes solver. In the present study, both chemical and thermal non-equilibrium effects were included. The flows over a blunt body model were simulated by varying surface catalytic recombination rates. A full range of catalycities was explored in the context of a constant wall temperature assumption. Detailed information on species concentrations, temperature, and surface heat flux are presented. Comparison with available flight data of surface heat flux is also made.

Oxy-Fuel and Flue Gas Recirculation Combustion Technology: A Review (순산소 및 배가스 재순환 연소 기술)

  • Kim, Hyeon-Jun;Choi, Won-Young;Bae, Soo-Ho;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.729-753
    • /
    • 2008
  • Oxy-fuel combustion is a reliable way for the reduction of pollutants, the higher combustion efficiency and the separation of carbon dioxide. The review of recent research trends and the prospects of oxy-fuel combustion were presented. The difference in characteristics among oxy-fuel combustion, conventional air combustion, oxy-fuel combustion with flue gas recirculation (FGR) technique was investigated. Recent experiments of oxy-fuel combustion with/without FGR were surveyed in various ways which are optimized burner design, flame characteristics, the soot emission, the radiation effect, the NOx reduction and the corrosion of combustor. Numerical simulation is more important in oxy-fuel combustion because flame temperature is so high that conventional measurement devices have a restricted application. Equilibrium and non-equilibrium chemical reaction mechanisms for oxy-fuel combustion were investigated. Combustion models suitable for the numerical simulation of non-premixed oxy-fuel flame were surveyed.

Calculation of the Activity Coefficients of Ions in Weak Electrolyte Solutions (묽은 전해질용액에서 이온의 활동도계수 계산)

  • Lee, Man-Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.9-13
    • /
    • 2018
  • The equilibrium constant of a chemical reaction is related to the standard Gibbs free energy change. Since equilibrium constant is defined as the ratio of the activities of the chemical species, it is necessary to consider the non-ideal behavior of the solutes as ionic strength of the solution increases. In this paper, the derivation of Debye-$H{\ddot{u}}ckel$ limiting law and its modification by which the activity coefficient of an ion can be calculated was explained. Moreover, the method to obtain the activity coefficient of an ion from the experimentally determined mean activity coefficients of an electrolyte was explained.

Crystallization and Magnetic Properties of Non-Equilibrium Al(Fe-Cu) Alloy Powders Produced by Rod Milling and Chemical Leaching (Rod Milling과 Chemical Leaching에 의해 제작된 비평형 Al(Fe-Cu) 합금 분말의 결정화 및 자기적 특성)

  • Kim Hyun-Goo
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.486-492
    • /
    • 2004
  • We report the crystallization and magnetic properties of non-equilibrium $Al_{0.6}(Fe_{x}Cu_{1-x})_{0.4}(x=0.25, 0.50, 0.75)$ alloy powders produced by rod-milling as well as by new chemical leaching. X-ray diffractometry, transmission electron microscopy, differential scanning calorimetry and vibrating sample magnetometry were used to characterize the as-milled and leached specimens. After 400 h or 500 h milling, only the broad peaks of nano bcc crystalline phases were detected in the XRD patterns. The crystallite size, the peak and the crystallization temperatures increased with increasing Fe. After being annealed at $600{^\circ}C$ for 1 h for as-milled alloy powders, the peaks of bcc $AlCu_{4}\;and\;Al_{13}Cu_{4}Fe_{3}\;for\;x=0.25,\;bcc\;AlCu_{4}\;and\;Al_{5}Fe_{2}\;for\;x=0.50,\;and\;Al_{5}Fe_{2},\;and\;Al_{0.5}Fe_{0.5}\;for\;x=0.75$ are observed. After being annealed at $500{^\circ}\;and\;600{^\circ}C$for 1 h for leached specimens, these non-equi-librium phases transformed into fcc Cu and $CuFe_{2}O_{4}$phases for the x=0.25 specimen, and into bcc ${\alpha}-Fe,\;fcc\;Cu,\;and\;CuFe_{2}O_{4}$ phases for both the x=0.50 and the x=0.75 specimens. The saturation magnetization decreased with increasing milling time for $Al_{0.6}(Fe_{x}Cu_{1-x})_{0.4}$ alloy powders. On cooling the leached specimens from $800{\~}850^{\circ}C$,\;the magnetization first sharply increase at about $491.4{\circ}C,\;745{\circ}C,\;and\;750.0{\circ}C$ for x=0.25, x=0.50, and x=0.75 specimens, repectively.

A comparison of predicted VLE of LNG mixtures containing $H_2S$ by use of Cubic and Noncubic EOS ($H_2S$를 포함하는 LNG 혼합물에 대한 Cubic과 Noncubic 상태방정식의 예측 비교)

  • Choi Eunjoo;Lee Taejong
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.1-5
    • /
    • 2000
  • Cubic and non-cubic equations of state are used to calculate the vapor-liquid equilibrium(VLE) compositions for liquified natural gas(LNG) containing hydrogen sulfide. Modified Benedict-Web-Robin EOS is chosen as a non-cubic equation of state while Peng-Robinson, Soave-Redlich-Kwong EOS are used for a cubic EOS. Modified Benedict-Web-Robin EOS. showed better predictability than the cubic EOS used for the systems $H_2S/CH_4,\;H_2S/iC_4H_{10},\;H_2S/N_2$. specially for liquid composition.

  • PDF

Formation and Chemical Leaching of a Non-Equilibrium Al(Fe-Cu) Alloy Powder produced by Rod-Milling (Rod Milling에 의해 제작된 비평형 Al(Fe-Cu) 합금 분말의 형성 및 Chemical Leaching)

  • 김현구;명화남
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.359-364
    • /
    • 2002
  • We report the structure, thermal and magnetic properties of a non-equilibrium $Al_{0.6}(Fe_{50}Cu_{50})_{0.4}$ alloy powder produced by rod milling and chemical leaching. An X-ray diffractometry(XRD), a transmission electron microscope(TEM), a differential scanning calorimeter(DSC), a vibrating sample magnetometer(VSM), and superconducting quantum interference device(SQUID) were utilized to characterize the as-milled and leaching specimens. The crystallite size reached a value of about 8.82 nm. In the DSC experiment, the peak temperatures and crystallization temperatures decreased with increasing milling time. The activation energy of crystallization is 200.5 kJ/mole for as-milled alloy powder. The intensities of the XRD peaks of as-milled powders associated with the bcc type $Al_{0.5}Fe_{0.5}$ structure formative at $350^{\circ}C$ sharply increase with increasing annealing temperature. Above $400^{\circ}C$, peaks alloted to $Al_{0.5}Fe_{0.5}$ and $Al_{5}Fe_{2}$ are observed. After annealing at $600^{\circ}C$ for 1h, the leached Ll specimen transformed into bcc $\alpha$-Fe and fcc Cu phases, accompanied by a change in the structural and magnetic properties. The saturation magnetization decreased with increasing milling time, and a value of about 8.42 emu/g was reached at 500 h of milling. The coercivity reached a maximum value of about 142.7 Oe after 500 h of milling. The magnetization of leached specimens as function of fields were higher at 5 K, and increased more sharply at 5 K than at 100 K.

A Thermodynamic Study on the Interaction of Quinolone Antibiotics and DNA

  • Lee, Byung-Hwa;Yeo, Ga-Young;Jang, Kyeung-Joo;Lee, Dong-Jin;Noh, Sang-Gyun;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1031-1034
    • /
    • 2009
  • Fluorescence of quinolones including norfloxacin, ciprofloxacin and S- and R-ofloxacin is quenched upon association with single and double-stranded DNA (ss- and ds-DNA). The ratios of fluorescence intensity in the presence of DNA to its absent were plotted with respect to the DNA concentration to construct the Stern-Volmer plot. The slope of the Stern-Volmer plot become larger as the temperature is lowered, ensuring that the fluorescence quenching is static process, i.e., the fluorescence is quenched by formation of the non-fluorescent complex between quinolone and DNA. In the static quenching mechanism, the quenching constant which is equivalent to the slope of the Stern-Volmer plot, is considered as the equilibrium constant for the association of quinolones and DNA. From the temperature-dependent equilibrium constant, ${\Delta}H^0\;and\;{\Delta}S^0$ was obtained using the van’t Hoff relation. In general, association of the quinolone with ds- as well as ss-DNA is energetically favorable (an exothermic) process while the entropy change was unfavorable. Due to the steric effect of the substituents, the effect of the quinolone ring is smaller on the ss-DNA compared to ds-DNA.

A DSMC Technique for the Analysis of Chemical Reactions in Hypersonic Rarefied Flows (화학반응을 수반하는 극초음속 희박류 유동의 직접모사법 개발)

  • Chung C. H.;Yoon S. J.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.63-70
    • /
    • 1999
  • A Direct simulation Monte-Carlo (DSMC) code is developed, which employs the Monte-Carlo statistical sampling technique to investigate hypersonic rarefied gas flows accompanying chemical reactions. The DSMC method is a numerical simulation technique for analyzing the Boltzmann equation by modeling a real gas flow using a representative set of molecules. Due to the limitations in computational requirements. the present method is applied to a flow around a simple two-dimensional object in exit velocity of 7.6 km/sec at an altitude of 90 km. For the calculation of chemical reactions an air model with five species (O₂, N₂, O, N, NO) and 19 chemical reactions is employed. The simulated result showed various rarefaction effects in the hypersonic flow with chemical reactions.

  • PDF