• 제목/요약/키워드: Chemical Kinetic Mechanism

검색결과 433건 처리시간 0.029초

Peroxy Acid Oxidations: A Kinetic and Mechanistic Study of Oxidative Decarboxylation of $\alpha$-Keto Acids by Peroxomonophosphoric Acid

  • Radhasyam Panda
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권8호
    • /
    • pp.909-913
    • /
    • 2001
  • The kinetics of oxidative decarboxylation of pyruvic acid and benzoylformic acid by peroxomonophosphoric acid (PMPA) in aqueous medium have been investigated. The reaction follows second order-first order each in PMPA and substrate concentration a t constant pH. The reactivity of different peroxo species in the oxidation has been determined. Activation energy and thermodynamic parameters have been computed. A plausible mechanism consistent with the observed results is proposed.

Nucleophilic Substitution Reactions of Thiophenyl Phenylacetate with Benzylamines in Acetonitrile

  • 오혁근;김선경;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권9호
    • /
    • pp.1017-1020
    • /
    • 1999
  • The aminolysis reactions of thiophenyl phenylacetates with benzylamines are investigated in acetonitrile at 55.0℃. Relatively large selectivity parameters, βx≒ 1.5, βz = -1.5~-1.8 and βxz = 0.92 together with the valid reactivity-selectivity principle are consistent with stepwise acyl transfer mechanism with rate limiting expulsion of the leaving group, thiophenolate anion, from the tetrahedral intermediate, T ± . The first order kinetics with respect to the benzylamine concentration and the realtively large secondary kinetic isotope effect (kH / kD = 1.2-1.7) involving deuterated benzylamine nucleophiles suggest a four center type transition state in which concurrent leaving group departure and proton transfer are involved.

Aminolysis of Aryl Thiol-2-furoates and Thiol-2-thiophenates in Acetonitrile

  • 오혁근;이준용;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권11호
    • /
    • pp.1198-1202
    • /
    • 1998
  • Aminolysis of aryl thiol-2-furoates and thiol-2-thiophenates with benzylainines are investigated in acetonitrile at 50.0 ℃. Relatively large selectivity parameters, ρx(βx), ρz(βx) and ρxz (> 0) together with the valid reactivity-selectivity principle are consistent with a stepwise acyl transfer mechanism with rate-limiting expulsion of the leaving group, thiophenolate anion, from the tetrahedral intermediate, T±. The first-order kinetics with respect to the benzylamine concentration and the relatively large secondary kinetic isotope effect involving deuterated benzylamine nucleophiles suggest a four-center type transition state in which concurrent leaving group departure and proton transfer are involved.

Kinetic Studies on the Reaction of the Heterobimetallic Anion, $(OC)_5CrMn(CO)_5{^-}M^+\;(M^+=Na^+,\;PPN^+)$ with Allyl Bromide

  • Park, Yong K.;Kim, Gyu S.;Song, Gwan O.
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권4호
    • /
    • pp.310-315
    • /
    • 1995
  • The heterobimetallic anion, (OC)5CrMn(CO)5-M+ (M+=Na+, PPN+), which has a donor-acceptor metal-metal bond1, was reacted with allyl bromide to yield BrCr(CO)5- and Mn(CO)5(CH2CHCH2). The reaction mechanism has been proposed in terms of the consecutive reaction pathway in which Cr(CO)5(THF) is an important intermediate leading to the corresponding product. Counterion effect on this reaction was also evaluated and the results were compared with those of the corresponding reaction of the mononuclear carbonyl anion, Mn(CO)5-.

Adsorption Behavior and Mechanism of Tripolyphosphate on Synthetic Goethite

  • Zhong, Yong;Sheng, Dandan;Xie, Fazhi;Li, Guolian;Li, Hui;Han, Xuan;Xie, Wenjie;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.146-152
    • /
    • 2019
  • In order to study the transport behavior of tripolyphosphate (TPP) in aqueous solutions, the adsorption process of TPP on synthetic goethite, which exists stably in supergene environment, has been systematically studied. The adsorption properties under different conditions (pH, electrolyte presence, and temperature) were investigated. The adsorption of TPP in the presence of humic acid (HA)/fulvic acid (FA) has also been discussed in this paper. The results indicated that the adsorption capacity quickly increased within the first hour and equilibrium was reached within 24 h. The adsorption capacity decreased from 1.98 to 0.27 mg·g-1 upon increasing the pH from 8.5 to 11.0, whereas the adsorption of TPP on goethite hardly changed with increasing electrolyte concentration. The results of analysis of the kinetic and isothermal models showed that the adsorption was more in accord with the pseudo second-order equation and Freundlich model. The adsorption capacity decreased obviously regardless of the order of addition of TPP, HA, and goethite. Subsequent addition of FA led to a large increase in the adsorption capacity, which might be attributed to the adsorption ability of FA. According to the predictions of the kinetic and isothermal models and the spectroscopic evidence (X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM)), the adsorption mechanism may be mainly based on surface complexation and physical adsorption.

Propylene Sulfide를 o-Sulfobenzoic Anhydride 개시제로 중합시킬 때 반응속도의 연구 (The Kinetic Study of Propylene Sulfide Polymerization Initiated by o-Sulfobenzoic Anhydride)

  • 한만정
    • 대한화학회지
    • /
    • 제22권4호
    • /
    • pp.268-274
    • /
    • 1978
  • Propylene sulfide를 o-sulfobenzoic anhydride로 중합시키면 양성이온 메카니즘에 의하여 중합이 진행되며, 이 반응의 속도를 연구하였다. 반응계중의 단위체와 개시제의 농도는 IR과 NMR를 이용하여 측정하였다. 성장반응속도가 개시반응속도보다 $10^3$정도 빠르며 이러한 결과는 양성이온 메카니즘에 의하여 생긴것으로 사료된다.

  • PDF

A Mechanistic Study on the Nucleophilic Addition Reactions of Benzylamines to the Activated Olefins

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권6호
    • /
    • pp.1195-1198
    • /
    • 2008
  • Kinetic studies of the additions of benzylamines to a noncyclic dicarbonyl group activated olefin, methyl $\alpha$-acetyl-$\beta$ -phenylacrylates (MAP), in acetonitrile at 30.0 ${^{\circ}C}$ are reported. The rates are lower than those for the cyclic dicarbonyl group activated olefins. The addition occurs in a single step with concurrent formation of the $C_\alpha$ -N and $C_\beta$ -H bonds through a four-center hydrogen bonded transition state. The kinetic isotope effects ($k_H/k_D$ > 1.0) measured with deuterated benzylamines ($XC_6H_4CH_2ND_2$) increase with a stronger electron acceptor substituent ($\delta\sigma$ X > 0) which is the same trend as those found for other dicarbonyl group activated series (1-4). The sign and magnitude of the cross-interaction constant, ρXY, is comparable to those for the normal bond formation processes in the $S_N2$ and addition reactions. The relatively low ${\Delta}H^\neq$ and large negative ${\Delta}S^\neq$ values are also consistent with the mechanism proposed.

Kinetic and Mechanism of the Addition of Benzylamines to α-Phenyl-β-thiophenylacrylonitriles in Acetonitrile

  • Hwang, Jae-young;Yang, Ki-yull;Koo, In-Sun;Sung, Dae-Dong;Lee, Ik-choon
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권5호
    • /
    • pp.733-738
    • /
    • 2006
  • Nucleophilic addition reactions of p-substitutedbenzylamines $(XC _6H_4CH _2NH _2)$ to $\alpha$-phenyl-$\beta$-thiophenyl-acrylonitriles ($YC _4SH _2CH=C(CN)C_6H_4$Y') have been studied in acetonitrile at 25.0, 30.0, and 35.0 ${^{\circ}C}$. The reactions take place in single step in which the $C_\beta$ -N bond formation and proton transfer to $C_\alpha$ of $\alpha$-phenyl-$\beta$-thiophenylacrylonitriles occur concurrently with four-membered cyclic transition structure. These mechanistic conclusions are drawn based on (i) the large negative $\rho$x and large positive $\rho$Y' values and also large magnitude of $\rho$X, (ii) the negative sign and large magnitude of the cross-interaction constants ($\rho$XY), (iii) the normal kinetic isotope effects ($k_H/k_D$ > 1.0), and (iv) relatively low $\Delta H ^\neq$ and large negative $\Delta S ^\neq$ values.

Dual Substituent Effects on Anilinolysis of Bis(aryl) Chlorothiophosphates

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3597-3601
    • /
    • 2013
  • The reactions of bis(Y-aryl) chlorothiophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The Hammett plots for substituent Y variations in the substrates show biphasic concave upwards with a break point at Y = H. The cross-interaction constants (${\rho}_{XY}$) are positive for both electron-donating and electron-withdrawing Y substituents. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorothiophosphates (2). The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of ${\rho}_{XY}$ from negative with 2 to positive with 1. The effect of the cross-interaction between Y and Y on the rate changes from negative role with electron-donating Y substituents to positive role with electron-withdrawing Y substituents, resulting in biphasic concave upward free energy correlation with Y. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate involving a predominant frontside attack hydrogen bonded, four-center-type transition state is proposed based on the positive sign of ${\rho}_{XY}$ and primary normal deuterium kinetic isotope effects.