• Title/Summary/Keyword: Chemical Grouting Method

Search Result 32, Processing Time 0.026 seconds

A Study on the Utilization of Coal Fired Fly-ash as Microfine Grouting Materials (초미립자 지반주입재로서 플라이애쉬의 적용성에 관한 연구)

  • 천병식;김진춘
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.113-125
    • /
    • 1998
  • At the end of 1997 about 3 million tons of coal ash was produced as byproducts from the coal fired electrical power plants in Korea. Only about 27% of that byproducts was utilized as the admixtures of cement and concrete industry. But the large quantity of coal fired fly-ash has been used as the soil improvement materials in other countries. So the aim of this study is the estimation of the applicability of the coal fired fly-ash as microfine grouting materials by admixing the superfine particles which were separated from the coal fired fly-ash for the higher values. The 6 types of specimens were manufactured in the laboratory for the purpose of estimating the chemical and physical properties of cement and grouts. These specimens consisted of 2 specific surfaces of 6, 000 and 8, 000$cm^2$/g in Elaine method. And these specimens are devide into 3 ratios (30%, 50%, 70%) of fly-ash by weight. From the estimated properties of the coal fired fly-ash microflne cements and grouts, 50% fly-ash is the most suitable ratio for grouting materials. However, further study of durability is necessary for using fly-ash grouts practically at the field projects. The higher content of the unburned carbon of fly-ash increases the thinner layer of carbon on the surface of solution of grouts, and requires more quantity of surface active agent. As a results of this study, it is found that the microfine fly-ash is very useful as a good grouting material if 50% of fly-ash is added with the microfine portland cement. So, in the near future, if the coal fired fly-ash is able to be used as grouting material in Korea, the demand of fly-ash will increase rapidly.

  • PDF

Research & Development of High Performance & Multi-Functional New Grouting Materials for Ground Improvement & Reinforcement (고성능 다기능 특수 그라우트 신재료 개발 및 기초지반보강재로의 사례 연구)

  • Park, Bong-Geun;Cho, Kook-Hwan;Na, Kyung;Yoon, Tae-Gook;Lee, Yong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.338-350
    • /
    • 2010
  • As existing materials for ground reinforcement, chemical grout material using cementitous materials and waterglass was used. But many problems in terms of ground reinforcement effects were implicated. In this study, for development and applicability verification of new materials, viscosity, fluidity, permeability, Self-Leveling, keeping of drilled hole, antiwashout underwater, resistance of water (groundwater dilution and minimize material eluting) and the early strength and long-term strength characteristics of developed materials was confirmed, and material standards, and establishing construction standards for the various model tests were conducted. As a result, high viscosity, flowability, permeability and keeping of drilled hole characteristics are excellent, in addition to the early strength properties, dilution does nat occur to groundwater, including groundwater is available for dealing with environmental issues. Application of basic and reinforcement method by Filler function in addition to structure can also or development of a new concept can be expected. In addition, middle and large-diameter drilled shaft, micropile, ground anchors, soil-nailing, steel pipes multi-grouting reinforcement for cement injection process could be used enough to even be considered.

  • PDF

A Study on the Development and Characteristics of Eco-friendly None Alkaline Silica Sol Grouting Material (친환경 비알칼리성 실리카졸 지반주입재의 개발과 특성에 관한 연구)

  • Hyunsang Kang;Daeseouk Chung
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.747-756
    • /
    • 2023
  • Purpose: In this study, a grout material mixed using non-alkaline silica-based materials, which is an eco-friendly injection material to stabilize ground, is investigated to improve conventional problems. Method: The homogel specimens of Eco-Friendly Non-Alkaline Silica Sol (ENASS) and L.W. and S.G.R., representative silicate grouting are manufactured. Physicochemical and engineering properties of the specimens are evaluated in laboratory with uniaxial compression strength, hydraulic conductivity, shrinkage, chemical resistance, elution, fish poison, waste leaching. Result: Laboratory test results show that the ENASS was superior in all aspects compared to the existing injection matirial. The suitability of the grout material with ENASS is investigated with filed tests. Conclusion: The results of laboratory and field tests demonstrates that the grout material with ENASS is eco-friendly material that increases the strength, decreases the permeability, and discharges pollutants without leaching.

Review of Pre-grouting Methods for Shield TBM Tunneling in Difficult Grounds (특수지반에서 쉴드TBM 굴착 시 프리그라우팅 적용 사례 고찰)

  • Yoon, Youngmin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.528-546
    • /
    • 2018
  • Cases of TBM tunnelling have been consistently increasing worldwide. In many recent subsea and urban tunnelling projects, TBM excavation has been preferably considered due to its advantages over drill and blast tunnelling. Difficult ground conditions are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. Under the difficult ground conditions, ground reinforcement measures should be considered including grouting, while it is of great importance to select the optimal grout material and injection method to cope with the ground condition. The benefits from TBM excavation, such as fast excavation, increased safety, and reduced environmental impact, can be achieved by applying appropriate ground reinforcement with the minimum overrun of cost and time. In this report, various grouting methods were reviewed so that they can be applied in difficult ground conditions. In addition, domestic and international cases of successful ground reinforcement for difficult grounds were introduced for future reference.

Evaluation of Shallow Foundation Behavior on Basalt Rock Layers With Clinker and Sediment Layers Reinforced Using Cement Grouting (현무암층 사이에 존재하는 클링커층과 퇴적층의 시멘트 그라우팅 보강에 따른 얕은 기초 거동 평가)

  • Lee, Kicheol;Shin, Hyunkang;Jung, Hyuksang;Kim, Donghoon;Ryu, Yongsun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.33-44
    • /
    • 2019
  • Clinker layer is a stratum structure distributed in volcanic area such as Jeju Island. The clinker layers were formed in between the repetitive action of eruption and solidification of lava flows. Since the clinker layer contains a large amount of voids accompanied by the lava gas ejection process, there is a possibility of inducing overall stability of the ground due to the low stiffness and strength of the clinker layer. Therefore, in this study, site investigation was carried out at both ends of the 00 bridge where the clinker layers exist. And, based on the ground survey results, the behavior of shallow foundations was analyzed numerically. In addition, the improved shallow foundation behavior in grouting substitution using the chemical injection method of the clinker layer was compared with the shallow foundation behavior in the ground, and the grouting substitution efficiency of each layer was analyzed. As a result, the bearing capacity, the replacement efficiency and elastic settlement were different according to the presence or absence of the sediment layer. This is because the sediment layer has a lower stiffness and density than the clinker layer.

An Experimental Study on Estimate of the Optimal Grout Injection Ratio for Stabilization of Mudstone fill (이암 성토지반의 안정화를 위한 최적주입률 산정에 관한 실험적 연구)

  • Lee, Jungsang;Lee, Seungjun;Kim, Yunjoong;Kim, Taesoo;Do, Jongnam;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.31-38
    • /
    • 2012
  • Water glass chemical grouts are primarily used in ground injection projects. Natural and Durable Stabilizer (NDS), Space Grout Rocket (SGR), and other similar materials composing of inorganic accelerating agents with ultra fine cement have been gaining popularity as ground improvement material in South Korea. However, there are questions as to grouting results and environmental issues caused by NDS grout. This study uses the injection method in mudstone embarkment to evaluate the differences in strength, permeability, and optimum injection volume through the use of uniaxial and triaxial compression tests and fish poison tests for NDS and SGR materials. After 28 days, results showed SGR and NDS to have a 50% increase in strength and 50% decrease in permeability with the proper injection rate at 50%.

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.414-423
    • /
    • 2006
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925, Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower and the motion of grout is also a function of formation permeability. Viscosity of grout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this thesis, characteristics of new cement grout material that is developed recently is studied: injectable volume of new grout material is tested in two different sizes of sands, and the method to calculate injectable volume of grout is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to be an exponential function of time. And lumped parameter $\theta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressure.

  • PDF

A Study on the Characteristics of Alkali Silica Sol Grouting Material (알칼리성 실리카졸 지반주입재의 특성에 관한 연구)

  • Cho, Younghun;Kim, Chanki;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.17-24
    • /
    • 2011
  • For the purpose of cut off and ground stabilization, water glass chemical grouting method using sodium silicate has problems of weakening durability and ground water pollution because leaching was conducted when the homogel is exposed to the ground water as time elapses. The purpose of this study is to identify the effect of alkali silica sol ground injection materials, it was compared with the sodium silicate ground injection materials using water glasses. For sodium silicate and alkali silica sol by mixing each case is divided into four different specimens were made and tested. The characteristic of alkali silica sol ground injection material was analyzed by unconfined compression test and environmental impact statement of ordinary portland cement and blast furnace slag cement. Alkali silica sol specimens were made mixing A-solution and B-solution in the proportion of one on one. Through this study, alkali silica sol ground injection mixing blast furnace slag cement has excellent strength and environment-friendly.

Damping Characteristics of Solidified Soils Using Water-glass Chemical Grout (물유리계 약액(藥液)을 사용(使用)한 고결토(固結土)의 진동감쇠특성(振動減衰特性))

  • Chun, Byung Sik;Kwon, Yung In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.141-150
    • /
    • 1988
  • Damping characteristics of chemically treated solls were studied by the use of FFT Analyzer and Bandwidth method. Also Modal Analysis was performed for the solidified silty sand samples. The soil samples were made of gravelly sand, sand, and silty sand, treated by water-glass chemical grouts. As the result of the study, it was found that the chemical grouting could be used for the vibration diminutinn effect as well as cut-off effect and strength improvement by the fact that the damping ratio of chemically treated soils was highly increased as the damping ratio of solidified soil was 0.11~0.22 and rathier high values in compare with the damping ratio of common soils which was 0.01~0.10.

  • PDF

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.5-13
    • /
    • 2007
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925. Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower one and the motion of grout is also a function of formation permeability. Viscosity of pout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this paper, characteristics of new cement grout material that has been developed recently are studied: injectable volume of new grout material is tested in two different grain sizes of sands; and the method to calculate injectable volume of grout Is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to increase as an exponential function of time. And lumped parameter $\delta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressures. Injection test results show that grout penetration rate is decreased by the increase of grout viscosity and clogging phenomena.