• Title/Summary/Keyword: Chemical Gas Sensor

Search Result 285, Processing Time 0.022 seconds

The Effect of in situ Ultraviolet Irradiation on the Chemical Vapor Deposited ZnO Thin Films (증착 중 자외광 노광에 의한 산화 아연 박막의 특성 변화)

  • Kim, Bo-Seok;Baik, Seung Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.241-246
    • /
    • 2016
  • ZnO thin films have wide application areas due to its versatile properties as transparent conductors, wide-bandgap n-type semiconductors, gas sensor materials, and etc. We have performed a systematic investigation on ultraviolet-assisted CVD (chemical vapor deposition) method. Ultraviolet irradiation during the deposition of ZnO causes chemical reduction on the growing surface; which results in the reduction of the deposition rate, increase in the surface roughness, and decrease of the electrical resistivity. These effects produce larger characteristic variation with various deposition conditions in terms of surface morphology and optical/electrical properties compared to normal CVD deposited ZnO thin films. This versatile controllability of ultraviolet-assisted CVD can provide a larger processing options in the fabrication of nano-structured materials and flexible device applications.

Synthesis of Cobalt Oxide Film by Thermal Decomposition for Potential Various Applications

  • Han, Seong Ho;Park, Bo Keun;Son, Seong Uk;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.365.1-365.1
    • /
    • 2014
  • Cobalt oxide has excellent various properties such as high catalytic activity, antiferromagnetism, and electrochromism. So cobalt oxides offer a great potential for their applications in the various areas such as optical gas sensor, catalysts for oxidation reaction, electrochromic devices, high temperature solar selective absorbers, magnetic materials, pigment for glasses and ceramics, and negative electrodes for lithium-ion batteries. We have synthesized novel cobalt complexes by simple reaction of cobalt bistrimethylsilylamide as a starting material with a lot of conventional ligands as potential cobalt oxide precursors. The studies include the facile preparation, structural characterization, and spectroscopic analysis of the new precursors. We are making efforts to grow cobalt oxide thin films using cobalt complexes newly synthesized in this study using deposition techniques.

  • PDF

A Study on the Diffusion Behavior of Leak Gas from Underground Gas Pipeline (지하매설 가스배관의 가스 누출시 지하 확산거동에 관한 연구)

  • Choi S.C.;Jo Y.D.;Kim K.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.43-52
    • /
    • 1999
  • An experimental chamber was fabricated to observe the gas diffusion behavior of leak gas from underground city-gas pipeline. It was made of acryl so that feeding of gas and the measuring points of the gas could be varied in each experiment. The MOS sensors were used to measure the concentrations of leak gas. The soil media such as the Jumunjin standard sand and the granite weathered soil were used to measure the gas diffusion and the change of leak gas concentrations was measured with time for various gas flow rate. As the distance between the leak point of gas and the measuring point of MOS sensor decreases, or the leak rate increases, the detection time of gas at a measuring points decreases and the gas concentration increases quickly and the concentration of the gas at steady state also increases. As the density of granite weathered soil is higher than that of Jumunjin standard sand for compaction, the detection time of leak gas in the granite weathered soil was longer than that in the Jumunjin standard soil. The leak gas concentrations in the granite weathered soil were lower than those in the Jumunjin standard sand at the beginning of gas leaking from a pipe, but inverse phenomenon was occured at steady state.

  • PDF

A Comparative Study of Gas Sensing Properties of Au-loaded ZnO and Au@ZnO Core-shell Nanoparticles

  • Majhi, Sanjit Manohar;Dao, Dung Van;Lee, Hu-Jun;Yu, Yeon Tae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.76-81
    • /
    • 2018
  • Au@ZnO core-shell nanoparticles (NPs) were prepared by a simple method followed by heat-treatment for gas sensor applications. The advantage of the core-shell morphology was investigated by comparing the gas sensing performances of Au@ZnO core-shell NPs with pure ZnO NPs and different wt% of Au-loaded ZnO NPs. The crystal structures, shapes, sizes, and morphologies of all sensing materials were characterized by XRD, TEM, and HAADF-STEM. Au@ZnO core-shell NPs were nearly spherical in shape and Au NPs were encapsulated in the center with a 40-45 nm ZnO shell outside. The gas sensing operating temperature for Au@ZnO core-shell NPs was $300^{\circ}C$, whereas it was $350^{\circ}C$ for pure ZnO NPs and Au-loaded ZnO NPs. The maximum response of Au@ZnO core-shell NPs to 1000 ppm CO at $300^{\circ}C$ was 77.3, which was three-fold higher than that of 2 wt% Au-loaded ZnO NPs. Electronic and chemical effects were the primary reasons for the improved sensitivity of Au@ZnO core-shell NPs. It was confirmed that Au@ZnO core-shell NPs had better sensitivity and stability than Au-loaded ZnO NPs.

Characteristics and Fabrication of Micro-Gas Sensors with Heater and Sensing Electrode on the Same Plane (동일면상에 heater와 감지전극을 형성한 마이크로가스센서의 제작 및 특성)

  • Lim, Jun-Woo;Lee, Sang-Mun;Kang, Bong-Hwi;Chung, Wan-Young;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-123
    • /
    • 1999
  • A micro-gas sensor with heater and sensing electrode on the same plane was fabricated on phosphosilicate glass(PSG, 800nm)/$Si_3N_4$ (150nm) dielectric membrane. PSG film was provided by atmospheric pressure chemical vapor deposition(APCVD), and $Si_3N_4$ film by low pressure chemical vapor deposition (LPCVD). Total area of the fabricated device was $3.78{\times}3.78mm^2$. The area of diaphragm was $1.5{\times}1.5mm^2$, and that of the sensing layer was $0.24{\times}0.24mm^2$. Finite-element simulation was employed to estimate temperature distribution for a square-shaped diaphragm. The power consumption of Pt heater was about 85mW at $350^{\circ}C$. Tin thin films were deposited on the silicon substrate by thermal evaporation at room temperature and $232^{\circ}C$, and tin oxide films($SnO_2$) were prepared by thermal oxidation of the metallic tin films at $650^{\circ}C$ for 3 hours in oxygen ambient. The film analyses were carried out by SEM and XRD techniques. Effects of humidity and ambient temperature on the resistance of the sensing layer were found to be negligible. The fabricated micro-gas sensor exhibited high sensitivity to butane gas.

  • PDF

Development of a Fluoride-Selective Electrode based on Scandium(III) Octaethylporphyrin in a Plasticized Polymeric Membrane

  • Kang, Young-Jea;Lutz, Christopher;Hong, Sung-A;Sung, Da-Yeon;Lee, Jae-Seon;Shin, Jae-Ho;Nam, Hak-Hyun;Cha, Geun-Sig;Meyerhoff, Mark E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1601-1608
    • /
    • 2010
  • A scandium(III) porphyrin-based fluoride-selective potentiometric sensor and its application in the analysis of hydrofluoric acid is described. Scandium(III) octaethylporphyrin, an ionophore recently developed for the optical fluoride sensor, was employed as a host molecule for the selective binding with fluoride in the plasticized PVC membrane. Nernstian response for $F^-$ between $10^{-4.6}$ to $10^{-1}$ M was observed at a glycine-phosphate buffer (pH 3.0). The selectivity pattern was observed as $F^-$, salicylate $\gg$ $SCN^-$ > $Cl^-$, $Br^-$, $NO_3{^-}$, $ClO_4{^-}$, which is consistent with the binding constant data measured in the plasticized PVC membrane based on a sandwich membrane method. This highly selective and reversible fluoride-sensitive electrode was employed for the analysis of hydrofluoric acid (HF). A disposable differential-type HF sensor was fabricated on the screen-printed electrode and demonstrated its ability to detect the neutral HF in the acidic solution.

Excellent Carbon Monoxide Sensing Performance of Au-Decorated SnO2 Nanofibers

  • Kim, Jae-Hun;Zheng, Yifang;Mirzaei, Ali;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.741-750
    • /
    • 2016
  • Nanofibers(NFs), because of their high surface area and nanosized grains, have appropriate morphologies for use in chemiresistive-type sensors for gas detection applications. In this study, a highly sensitive and selective CO gas sensing material based on Au-decorated $SnO_2$ NFs was fabricated by electrospinning. $SnO_2$ NFs were synthesized by electrospinning and subsequently decorated with various amounts of Au nanoparticles(NPs) by sputtering; this was followed by thermal annealing. Different characterizations showed the successful formation of Au-decorated $SnO_2$ NFs. Gas sensing tests were performed on the fabricated sensors, which showed bell-shaped sensing behavior with respect to the amount of Au decoration. The best CO sensing performance, with a response of ~20 for 10 ppm CO, was obtained at an optimized amount of Au (2.6 at.%). The interplay between Au and $SnO_2$ in terms of the electronic and chemical sensitization by Au NPs is responsible for the great improvement in the CO sensing capability of pure $SnO_2$ NFs, suggesting that Au-decorated $SnO_2$ NFs can be a promising material for fabricating highly sensitive and selective chemiresistive-type CO gas sensors.

An Experimental Study on the Cooling Characteristics of an Infrared Detector Cryochamber (적외선 센서용 극저온 용기의 냉각특성에 관한 실험적 연구)

  • Kang Byung Ha;Lee Jung Hoon;Kim Ho-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.889-894
    • /
    • 2004
  • Infrared (IR) detectors are widely used for many applications, such as temperature measurement, intruder and fire detection, robotics and industrial equipment, thermoelstic stress analysis, medical diagnostics, and chemical analysis. Quantum detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal analysis of cryochamber includes the conduction heat transfer through a cold well, the gases conduction and gas outgassing, as well as radiation heat transfer, The transient cooling characteristics of an infrared detector cryochamber are investigated experimentally in the present study. The transient cooling load increases as the gas pressure is increased. Gas pressure becomes significant as the cooling process proceeds. Cool down time is also increased as the gas pressure is increased. It is also found that natural convection effects on cool down time become significant when the gas pressure is increased.

Worker Symptom-based Chemical Substance Estimation System Design Using Knowledge Base (지식베이스를 이용한 작업자 증상 기반 화학물질 추정 시스템 설계)

  • Ju, Yongtaek;Lee, Donghoon;Shin, Eunji;Yoo, Sangwoo;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.9-15
    • /
    • 2021
  • In this paper, a study on the construction of a knowledge base based on natural language processing and the design of a chemical substance estimation system for the development of a knowledge service for a real-time sensor information fusion detection system and symptoms of contact with chemical substances in industrial sites. The information on 499 chemical substances contact symptoms from the Wireless Information System for Emergency Responders(WISER) program provided by the National Institutes of Health(NIH) in the United States was used as a reference. AllegroGraph 7.0.1 was used, input triples are Cas No., Synonyms, Symptom, SMILES, InChl, and Formula. As a result of establishing the knowledge base, it was confirmed that 39 symptoms based on ammonia (CAS No: 7664-41-7) were the same as those of the WISER program. Through this, a method of establishing was proposed knowledge base for the symptom extraction process of the chemical substance estimation system.

Effect of Humidity and Operating Temperature of Polymer Sensor to Methanol Gas (Methanol 가스에 대한 고분자 센서의 온도와 습도 영향 고찰)

  • Lee, K.M.;Hoh, Y.S.;Jun, H.K.;Sohn, S.O.;Huh, J.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.796-800
    • /
    • 2003
  • The polypyrrole prepared with pyrrole monomer, APS and DBSA was synthesized by chemical Polymerization at $V^{\circ}C$ under atmosphere conditions. After dissolving polypyrrole powder to the chloroform including DBSA, polypyrrole film was prepared on the alumina substrate with an interdigitated electrode by using the dip-coating method. This film was soaked in methanol solvent for 1 h at room temperature and heated to $70^{\circ}C$ for 4 h in $N_2$. Initial resistance was increased with the increasing humidity and decreasing temperature. The sensitivity was increased with lower humidity and decreasing temperature. The best linearity was achieved at $25^{\circ}C$ and low humidity of 0%.