• Title/Summary/Keyword: Chemical Equilibrium

Search Result 1,133, Processing Time 0.029 seconds

Chemical Equilbrium Analysis of the $30\;ton_f$ - class KARI LRE Nozzle Flow (KARI 30톤급 액체 로켓 엔진 노즐 유동 화학 평형 해석)

  • Lee, Dae-Sung;Kang, Ki-Ha;Cho, D.R.;Choi, Jeong-Yeol;Choi, H.S.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.9-15
    • /
    • 2008
  • Nozzle flow analyses of $30\;ton_f$-class KARI liquid rocket engine for high altitude propulsion are carried out using a chemically frozen and equilibrium flow analysis code developed previously. It is considered that the combined frozen- and shifting- equilibrium analysis is cost-effective regarding the convergence characteristics and modeling uncertainties, though the non-equilibrium analysis is most reliable approach. A dependable performance prediction could be attainable through the present analyses that account for the recombination process and thermal and kinetic energy recovery during the expansion process with viscous effects.

The Prediction of Vapor-Liquid Equilibrium Data for Methanol/3-methyl-1-butanol System at Constant Temperature (정온하에서 Methanol/3-methy-1-butanol계에 대한 기-액 평형치의 추산)

  • Kim, Jong-Shik;Lee, Joon-Man
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.749-754
    • /
    • 2005
  • For the binary system of methanol/3-methyl-1-butanol mixture vapor-liquid equilibrium data were measured isothermally at 50, 55, 60, 65, and $70^{\circ}C$. An empirical relation to predict vapor-liquid equilibrium data was obtained from the above measured data. The predicted values compared with the measured ones were in a good agreement, within accuracy ${\pm}0.0007$. The excess molar volume, measured for the binary system of methanol/3-methyl-1-butanol mixture, was positive $V^Eover$ the entire composition range. The maximum values were shown to be about $0.096cm^3/mol$ at x= 0.683.

Synthesis and Exchange Properties of Sulfonated Poly(phenylene sulfide) with Alkali Metal Ions in Organic Solvents

  • Son, Won Geun;Kim, Sang Heon;Park, Su Gil
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • Sulfonated poly(phenylene sulfide) (SPPS) polymers were prepared by sulfonation of poly[methyl[4-(phenylthio) phenyl]sulfonium trifluoromethanesulfonate] (PPST) with fumic sulfonic acid (10% $SO_3-H_2SO_4$) and demethylation with aqueous NaOH solution. The equilibrium constants of ion exchange reactions between alkali metal cations ($Li^+,\;Na^+,\;and\;K^+$) and SPPS ion exchanger in organic solvents such as tetrahydrofuran (THF) and dioxane were measured. The equilibrium constants of ion exchange reactions increased as the polarity of the solvent increased, and the reaction temperature decreased. The equilibrium constants of the ion exchange reaction ($K_{eq}$) also increased in the order of $Li^+,\;Na^+,\;and\;K^+$. To elucidate the spontaneity of the exchange reaction in organic solvents, the enthalpy, entropy, and Gibbs free energy were calculated. The enthalpy of reaction ranged from -0.88 to -1.33 kcal/mol, entropy ranged from 1.42 to 4.41 cal/Kmol, and Gibbs free energy ranged from -1.03 to -2.55 kcal/mol. Therefore, the exchange reactions were spontaneous because the Gibbs free energies were negative. The SPPS ion exchanger and alkali metal ion bounding each other produced good ion exchange capability in organic solvents.

Equilibrium and Non-equilibrium Molecular Dynamics Simulations of Thermal Transport Coefficients of Liquid Argon

  • Chang Bae Moon;Gyeong Keun Moon;Song Hi Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.309-315
    • /
    • 1991
  • The thermal transport coefficients-the self-diffusion coefficient, shear viscosity, and thermal conductivity-of liquid argon at 94.4 K and 1 atm are calculated by non-equilibrium molecular dynamics (NEMD) simulations of a Lennard-Jones potential and compared with those obtained from Green-Kubo relations using equilibrium molecular dynamics (EMD) simulations and with experimental data. The time-correlation functions-the velocity, pressure, and heat flux auto-correlation functions-of liquid argon obtained from the EMD simulations show well-behaved smooth curves which are not oscillating and decaying fast around 1.5 ps. The calculated self-diffusion coefficient from our NEMD simulation is found to be approximately 40% higher than the experimental result. The Lagrange extrapolated shear viscosity is in good agreement with the experimental result and the asymptotic formula of the calculated shear viscosities seems to be an exponential form rather than the square-root form predicted by other NEMD studies of shear viscosity. The agreement for thermal conductivity between the simulation results (NEMD and EMD) and the experimental result is within statistical error. In conclusion, through our NEMD and EMD simulations, the overall agreement is quite good, which means that the Green-Kubo relations and the NEMD algorithms of thermal transport coefficients for simple liquids are valid.

Estimated Environmental Distribution of Acetanilide Using EQC Model (EQC모델을 이용한 Acetanilide의 환경중 분포예측)

  • 박광식;권민정;최윤호;송상환;박혜연;구현주
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.3
    • /
    • pp.133-137
    • /
    • 2001
  • Acetanilide is a High Production Volume Chemical, which is produced about 2,300 tons/year in Korea as of 1998 survey. Most is used as an intermediate for synthesis of pharmaceuticals and dyes and the chemical is one of seven chemicals of which human and environmental risks are being assessed by National Institute of Environmental Research under the frame of OECD SIDS program. The chemical is water soluble (4 g/1 at 20$\^{C}$) and readily biodegradable (68.7%). Partition coefficiency (Log Pow) is 1.16 at 23$\^{C}$ so that the chemical has a low potential for bioaccumulation. The acute toxicities of algae, daphnia and fish are not high. The 72 hr-EbC50 of algae is 13.5 mg/1,48 hr-EC50 of daphnia is over 100 mg/1 and 96 hr-LC50 of Oryzias latipes is over 100mg/1. Regarding the exposure, levels in air, water, soil or sediment have not been monitored or estimated so that risk evaluation of acetanilide was not possible. In this study, distribution of the chemical among environmental media was estimated using EQC model based on the chemical-physical properties. In Level I and IIof which the chemical are hypothesized in equilibrium and no transfer through the media, more than 98% of acetanilide are estimated to be distributed in water. However, in Level Ⅲ of which non-equilibrium and intermedia transfer could be occurred, the chemical is estimated to distributed to soil as 51.8% and water as 47.8% as of total amount.

  • PDF

Chemical Leaching of Non-Equilibrium Al(Fe-Co) Powder Produced by Rod Milling

  • Kim, Hyun-Goo
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.305-309
    • /
    • 2003
  • We report on the formation and chemical leaching of non-equilibrium $Al_{0.6}(Fe_{75}Co_{25})$ alloy produced by rod milling. X-ray diffractometry, transmission electron microscopy, differential scanning calorimetry, scanning electron microscopy, and vibrating sample magnetometry were used to characterize the as-milled and leached specimens. After 400 h, only the $Al_{0.4}Fe_{0.6}$ peak of the body-centered cubic type was present in the XRD pattern. The entire rod milling process could be divided into three different stages of milling: agglomeration, disintegration, and homogenization. The saturation magnetization, $M_s$ decreased with increased milling time, the $M_s$ of the powders before milling was about 113.8 emu/g, the $M_s$ after milling for 400 h was about 11.55 emu/g. Leaching of the Al in KOH of the Al at room temperature from the as-milled powders did not induce any significant change in the diffraction pattern. After the leached specimen had been annealed at $600^{\circ}C$ for 1 hour, the nanoscale crystalline phases were transformed into the bcc Fe, cubic Co, and $CoFe_2O_4$ phases. On cooling the specimen from 85$0^{\circ}C$, the degree of magnetization increased slightly, then increased sharply at approximately 364.8$^{\circ}C$, indicating that the bcc $Al_{0.4}Fe_{0.6}$ phase had been transformed to the Fe and Co phases.

Adsorption Equilibrium of Bovine Serum Albumin Protein on Porous Polymer Microgels (다공성 고분자 마이크로겔의 Bovine Serum Albumin 단백질의 흡착평형)

  • Kim, Kong-Soo;Kang, Seog-Ho
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.311-316
    • /
    • 1998
  • The adsorption equilibrium properties of bovine serum albumin(BSA-protein) for three kinds of porous microgels with different physical and chemical features were investigated. The adsorption amount of BSA-protein on poly(butyl methacrylate)(PBMA) microgels was higher than those on poly(vinyl pyridine)(PVP) and poly(acrylonitrile) (PAN) microgels due to the hydrophobic interaction between polymer and protein in an aqueous solution. And PBMA microgels had more irreversible adsorption equilibrium properties the PVP and PAN microgels. It implies that hydrophobic interaction plays a more important role in adsorption properties of BAS-protein than physical properties of polymer and electrostatic attraction between protein and polymer microgels. Characteristics of the microgels used in this study followed Langmuir equation better than the Freundlich equation.

  • PDF

Thermodynamic Investigation of the Formation of Complexes between Norfloxacin and Various Mononucleotides

  • Kwon, Yong-Jun;Lee, Hyun-Mee;Han, Sung-Wook;Lee, Dong-Jin;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3233-3238
    • /
    • 2011
  • The fluorescence of norfloxacin was quenched by various nucleotides. The ratio of the fluorescence intensities in the absence and presence of nucleotide was linearly dependent on nucleotide concentration, suggesting that quenching occurred through the formation of nonfluorescent norfloxacin-nucleotide complexes. The gradient of the linear relationship represented the equilibrium constant of complex formation; it decreased with increasing temperature. The slopes of van't Hoff plots constructed from the temperature-dependent equilibrium constants were positive in all cases, indicating that complex formation was energetically favorable - i.e., exothermic, with negative Gibb's free energy. The equilibrium constant increased when triphosphate was used instead of monophosphate. It also increased when the oxygen at the $C'_2$ position of the nucleotide was removed. Both enhancements were due to entropic effects: entropy decreased when complexes with AMP or GMP formed, while it increased when norfloxacin complexed with ATP, GTP, dAMP and dGMP.