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The thermal transport coefficients-the self-diffusion coefficient, shear viscosity, and thermal conductivity-of liquid argon 

at 94.4 K and 1 atm are calculated by non-equilibrium molecular dynamics (NEMD) simulations of a Lennard-Jones 

potential and compared with those obtained from Green-Kubo relations using equilibrium molecular dynamics (EMD) 

simulations and with experimental data. The time-correlation functions-the velocity, pressure, and heat flux auto-corre­

lation functions-of liquid argon obtained from the EMD simulations show well-behaved smooth curves which are 

not oscillating and decaying fast around 1.5 ps. The calculated self-diffusion coefficient from our NEMD simulation 

is found to be approximately 40% higher than the experimental result. The Lagrange extrapolated shear viscosity 

is in good agreement with the experimental result and the asymptotic formula of the calculated shear viscosities 

seems to be an exponential form rather than the square-root form predicted by other NEMD studies of shear viscosity. 

The agreement for thermal conductivity between the simulation results (NEMD and EMD) and the experimental 

result is within statistical error. In conclusion, through our NEMD and EMD simulations, the overall agreement 

is quite good, which means that the Green-Kubo relations and the NEMD algorithms of thermal transport coefficients 

for simple liquids are valid.

Introduction

Molecular theory of transport through gases and liquids 

is now very active area of research and it has been only 

in the 1960s that this field has been set on a basis compar­

able to equilibrium statistical mechanics. There are various 

theories of transport in gases and liquids: the elementary 

kinetic theory of gases and molecular collisions, the macro­

scopic equations of continuum mechanics or hydrodynamics 

such as the continuity equation, the momentum balance 

equation, and the energy balance equation (this is essentially 

the thermodynamic background for non-equilibrium statisti­

cal mechanics), the concept of phase space and Lionville 

equation which result in the reduced distribution function 

and BBGKY hierarchy for fluid distribution function, the 

Boltzmann equation and the Chapman-Enskog method which 

are respectively the central equation of the rigorous kinetic 

theory of gases and the standard method for solving this 

Boltzmann (integrodifferential) equation, and finally the time­

correlation function method (Green-Kubo relations) which 

is probably the most successful theory for transport of li­

quids.

Green and Kubo1 showed that the phenomenological coef­

ficients describing many transport processes and time-depen­

dent phenomena in general could be written as integrals 

over a certain type of function called a time-correlation func­

tion. These time-correlation functions play a somewhat simi­

lar role in nonequilibrium statistical mechanics that the par­

tition function plays in equilibrium statistical mechanics. The

Table 1. Green-Kubo Relations for Thermal Transport Coefficie­

ntsu'oo
dt ＜仇(0) •饥(f)〉self-diffusion coefficient

0
(1)

_ V n— kT
1 dt〈F/0)F却(t)〉shear viscosity 

)0
(2)

X__L_ J dt〈/앖，(0)/@。)〉therm기 conductivity
(3)

where Vi is the velocity of particle i, Pxy is an off-diagonal 

(r#7)of the viscous pressure tensor:

PV=^ mViVi + riFi (4)

i I

and Jqx is a component of the energy current:

Jq V= £ EiVi + —? £ Z 为血, E» (5)

i Z j j

analogy breaks down in one respect. Since the state of ther­

mal equilibrium is unique, a single partition function gives 

all the thermodynamic properties, but since there are many 

different kinds of nonequilibrium states, a different time-cor­

relation function for each type of transport process is needed. 

Determining the appropriate time-correlation function to use 

for a particular transport process of interest is very impor­

tant.

The Green-Kubo relations (Table 1) are the formal expres­
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sions for hydrodynamic field variables and some of the ther­

modynamic properties in terms of the microscopic variables 

of an N-particle system. The identification of microscopic 

expressions for macroscopic variables is made by a process 

of comparison of the conservation e아nations of hydrodyna­

mics with the microscopic equations of change for conserved 

densities. The importance of these relations is three-fold: 

they provide an obvious method for calculating transport 

coefficients using computer simulation, a convenient starting 

point for constructing analytic the ories for nonequilibrium 

processes, and an essential information for designing non­

equilibrium molecular dynamics (NEMD) algorithm.

In practice of performing an equilibrium molecular dyna­

mics simulation of an N-particle system to calculate transport 

coefficients directly from the Green-Kubo relations, it is 

found that since the time-correlation functions decay in a 

slow algebraic fashion (t~d/2 in d dimensions)2, a large portion 

of the transport coefficient is determined by the long time 

tail of the correlation functions. This is probably the most 

difficult part of the correlation function to calculate. Another 

problem relating to the calculation of the correlation function 

is the size of simulation box. If one wishes to calculate a 

time correlation over a time span t, then one must ensuren 

that the system simulated is sufficiently large for a sound 

wave not to be able to traverse the system in a time less 

than t. If this condition is not fulfilled the periodic image 

convention used in simulation means that the damping of 

the sound wave will be modified as an image sound wave 

propagates across the system.3 For these and other reasons, 

new method to calculate transport coefficients was appeared 

in the early 1970's which would be more efficient than the 

equilibrium Green-Kubo method.

The development of non-equilibrium molecular dynamics 

(NEMD) technique in recent years has made it possible to 

calculate theoretically a wide variety of thermal transport 

coefficients essentially exactly from a given potential model 

for the interactions between the molecules at the microscopic 

level. These quantities include the shear(T]) and bulk (k) 

viscosities, thermal conductivity (人)，and self-diffusion coeffi­

cient (Z>s) of both simple and molecular fluids.4*23 The gene­

ral priciple of the NEMD method24 is to introduce a (possibly 

fictitious) external field X into the equations of motion of 

the system, which derives the corresponding thermodynamic 

flux J. The first requirement for this applied field is that 

it should be consistent with the periodic boundary conditions 

to ensure that the simulation box remains homogeneous. The 

second requirement is that the transport coefficient g of in­

terest can be calculated from the constitutive relation 

where t is time. The formal proof that an algorithm satisfies 

these two requirements is given by linear response theory.18,25,26 

In many cases the value of the thermal transport coefficient 

at non-zero fields has no physical meaning since the field 

used to derive the thermodynamic flux is fictitious, but the 

sllod algorithm for planar Couette flow18,26 used to calculate 

shear viscosity can be shown to be exact for all values of 

the field as noted in Sec. IL (2)..

In this paper, we perform equilibrium and nonequilibrium 

molecular dynamics simulations to calculate the thermal 

transport coefficients (we restrict ourselves to calculate only 

the self-diffusion coefficient Ds, shear viscosity u，and ther­

mal conductivity X) of argon at 94.4 K and 1 atm. In Sec. 

II, the NEMD algorithm derived from the linear response 

theory and details of simulations of liquid argon are briefly 

described. Results and discussion is presented in Sec. III. 

Finally in Sec. IV, concluding remarks are presented.

Non-Equilibrium Molecular Dynamics

Hamiltonian Algorithm for Self-diffusion Coeffi­
cient. The Hamiltonian for a many-body system

A72zn + O(r) (7)
i

has added to it a pertiirbating external field at time 0

H=H°+$""e, t>0 (8)

1

where c, are colour charges analogous to electric charges 

and F(t) is the applied colour field. For simplicity c, is given 

by ( — l)1 for an even number of particles N. The external 

field F stimulates a current density Jx

Jx=y^CiXl (9)

analogous to an electric current density where V is the vo­

lume. The linear response theory18,25,26 predicts that in the 

linear small field limit,

lim〈丄사、)〉= - f ds x(/-s) F(s) (10)

/-»«> J o

wher the susceptibility, %, is

x(t)= 0(t比(0)〉 (11)

Because the unpertubed Hamiltonian Ho and the propagator 

* are both colour blind where L is the Liouville operator, 

and when Eq. (9) is substituted into Eq. (11) for Jx (0) and 

Jx (/), the colour current autocorrelation function can be writ­

ten in terms of the velocity auto-correlation function in the 

Green-Kubo relations, Eq. (1):

X(0 =(心 1 帀矛(°)〉 Q2)

Taking the integration over time t in Eq. (12) and using 

Eq. (10) with constant field F(J；x(t—s)ds=j5x(s)ds, as —8), 

thus the self-diffusion coefficient can be determined by ca­

rrying out a series of constant field simulations and extra­

polating the resulting conductivities to the zerofiled limit

牛迪潔丝阮[网*] (13)

ly D L r 」

The equations of translational motion for atomic molecule 

are given by

r i~pi/m (14)

pxi=FXi^-CiF-apXi (15a)

pyi —Fyi—apyi (15b)

pzi=FZi~apzi (15c)
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where the external field is applied to only the x-direction 

and a is a parameter from the translational temperature const­

raint of systems of canonical ensembl은 販 V, T fixed). The 

derivation of the terms containing a in the equations of mo­

tion is obtained using Gauss's principle of least contraint.13,27 

The constant translational temperature constraint requires 

that

l 쓰*〉 3NkT s、
«?/==一 (16)

The parameter can be identified explicitly by multiplying 

the equations of motion (15) by p疝 Dg and g and summing 

over all particles

읍[lb P'2] = P' 出= 으 흐F
=2%明+矿如C為一。2彝步=0 

t I t

Thus the parameter a is function of time which depend upon 

the particle colours charges, velocities, and forces.

a니 Z/H+rZ Cipxt]/ 23•勿 (17) 

I I I

Shear Viscosity from Steady Planar Couette Flow. 
The simulation for the shear viscosity closely mimics real 

viscous flow a fluid under a steady uniform shearing motion,

i.e.,  with two plates moving in opposite x directions located 

at > = ± qo, characterized by a velocity gradient of the form 

dux/dy=Y where y is the constant strain rate. Among many 

methods for simulating a steady planar Couette flow, the 

most efficient technique appears to be the Sllod algorithm.18 

This algorithm uses the usual periodic boundary conditions 

in the x and z directions but in the y direction the periodic 

image cubes move in the positive and negative x directions 

according to the strain rate y. This is the well-known Msliding 

brick** boundary condition28 the row of bricks immediately 

above the central simulation cube slide with constant velocity 

yL in the positive x direction and the row of bricks below 

the central cube slide with equal velocity but the opposite 

direction where L is the length of the side of the simulation 

cube. In this boundary condition, a molecule leaving the top 

(bottom) of the central cube reenters at the bottom (top) 

shifted to the left (right) by an amount yLt and with the 

x component of its velocity reduced (increased) by an amount 

yL. The wsliding brick” boundary condition also alters the 

usual minimum image convention.

The linear response theory18,25,26 may be applied to the 

equation of motion as in the applied colour field in Sec. 

III. (1) and in the linear small strain rate y，

〈鸟(£)〉=— lim £ds x(£—s) y(s) (18)

where Pxy is the xy component of the viscous pressure tensor, 

Eq. (4), and

V 又任)=—寿 아%。)鸟(0)〉 (19)

is the susceptibility. As the same process in Eq. (12) and 

(13), taking the integration over time t in Eq. (19), %(0 be­

comes precisely the Green-Kubo integrand for the shear visco­
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sity, Eq. (2). Being constant strain rate y(s) in the limit of 

£Tqo in Eq. (18), when this is combined with the integrated 

form of Eq. (19) the shear viscosity can be calculated by

' 『 慄[ 삐 쓱此] (20)

The sllod equations18,24 of translational motion for atomic 

molecule are given by

xi=pXi/m+yiy (21a)

yi=py/m (21b)

Zi=p2i/m (21c)

pxi=% -/소v — 였)蚯 (22a)

Pyi-Fyi-apyi (22b)

-이坷 (22c)

The constant translational temperature constraint parameter 

a can be derived in the same process for Eq. (17) under 

the same requirement, Eq. (16)

a= ¥ -附i: Vu)]/ 2 (23)

NEMD Algorithm for Thennal Conductivity. The 

NEMD algorithm for thermal conductivity has been develop­

ed by Evans12,20 and involves the use of fictitious vector field 

F as the deriving force for a heat flux Jq, Eq. (5). In the 

linear small external field Fz, the ensemble average of cor­

responding thermodynamic heat flux at time t is given 

by

lim [ ds x(f-s) Fz(s) (24)

FT) JO

where the susceptibility, %, is

X(t)=裹偽"(0)〉 (25)

Ri

Integrating over time t in Eq. (25) and using Eq. (3), we 

obtain

对) (26)

Further using Eq. (24) in the limit of ts with constant 

EJs), the thermal conductivity is derived as

M= —lim [ lim "임》1 (27)

]fD L f z 」

Consider the equations of motion for atomic molecule:

Yi =p/m (28)

方=氏+旧一厨 F(t)

—~寿 Z Fjh rjk -F(t) - aj)i (29)

where E, and E are, respectively, the instantaneous energy 

of molecule i and the average energy of the system, the 

constant translational temperature constraint parameter, a, 

is
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Figure 1. Normalized velocity autocorrelation function of liquid 

argon at 94.4 K and 1 atm.

Figure 2. Normalized pressure auto-correlation function of li­

quid argon at 94.4 K and 1 atm.

£[F, + C&-E)F(t)- + — 以•■%)]/

1 2 j_______________2N 讣________________
U一

孝'"' (30)

and Fy is the force on particle i due to j.

Details of EMD and NEMD Simulations of Liquid 
Argon. The usual Lennard-Jones 12-6 potential for the in­

teraction between atoms is used with LJ parameters, a=3.4 

A and e為=120 K. The interatomic potential is truncated 

at 8.5 A, the cut-off distance used in many other simulations. 

The preliminary canonical ensemble (NVT fixed) MD simu­

lation of 216 argon atoms was started in the cubic box of 

length L=2.191 A, of which the density is equal to 1.374 

g/cm3 at 94.4 K and 1 atm. The equations of motion are 

solved using a fifth-order predictor-corrector Gear integra­

tion29 with a time step of 10-14 second.

Results and Discussion

In equilibrium molecular dynamics simulations, the ther­

mal transport coefficients of gases and liquids may be calc­

ulated by using the Green-Kubo relations from various cor­

relation functions as given in Table 1. The integrands in 

Eqs. (1), (2), and (3) are called the velocity, pressure, and 

heat flux auto-correlation functions respectively. In spite of 

the difficulties of calculation of correlation functions as men­

tioned in Sec. I, these time-correlation functions are calculat­

ed. To average the velocity auto-correlation function, the 

trajectories (positions and momenta) of all the particles are 

stored every time steps (0.01 ps). This run ends after 1,000 

time steps due to the difficulty of storing a huge number 

of data. A set of correlation function of 0 ps to 1.5 ps is 

obtained from the trajectories of 1~151 time steps, another 

set is obtained from 2~152 time steps, and so on. The curve 

in Figure 1 is averaged over these 850 sets of individual 

curves. The curves in Figure 2 and 3 are averaged over 

1850 sets of those curves which needs 2,000 time steps run.

Figure 3. Normalized heat flux auto-correlation function of li­

quid argon at 94.4 K and 1 atm

As the factor 3 for the x-, y-, and ^-components of the velocity 

in calculation of the self-diffusion coefficient of Eq. (1), the 

shear viscosity and thermal conductivity need the factors, 

respectively, 6 and 3 for averaging over the xy-f yx-, xz-t zx-} 

yz-, and 研components of the pressure tensor P and the 

X-, y-, and z-components of the heat flux vector Jq in Eqs. 

(2) and (3) due to the isotropic property of bulk argon.

In Figure 1-3 we have plotted the normalized velocity, 

pressure, heat flux autocorrelation functions of liquid argon 

at 94.4 K and 1 atm. In contrast to the failure to obtain 

the pressure and heat flux auto-correlation functions of liquid 

water at 298.15 K and 1 atm as reported in our later study,30 

these time-correlation functions show well-behaved smooth 

curves which are not oscillating and decaying rapidly to zero 

around 1.5 ps. The velocity auto-correlation function has al­

most the same features appeared in other Lennard-Jones
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Table 2. Comparison of the Results Obtained from the Green-Kubo 

Relations for Thermal Transport Coefficients of Liquid Argon at 94.4 

K and 1.374 g/cm3 with Those Values Obtained from Lagrange Inter­

polation32 of Experimental Results33

Transport properties
Green-Kubo 

results

Experimental 

results

S이f-diffusion coefficients 2.44 2.83

(IM cm2/sec)

Shear viscosity (mp.) 2.29 1.97

Thermal conductivity 1.84 2.74

(IO-4 cal/see • cm , K)

2.9

4
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Figure 4. NEMD simulation results for the self-diffusion coeffi­

cient , in the unit of IO-4 cm2/sec, of liquid argon at 94쇼 K 

and 1 atm as a function of external field (g*nm/mobps2). The 

white circle at zero external fi이d is obtained by least squares 

fit of the results to a straight line. □ is an experimental result 

and the black circle represents the EMD result obtained from 

the Green-Kubo relation. The error bars indicate the standard 

deviation.

particle computer simulation.31 The negative region of this 

correlation function indicates that it is probale that the parti­

cle changes its movement to a direction opposite that which 

it had at f=0, due to a collision with the nearest particle. 

The pressure auto-correlation function shows the same beha- 

vor as the velocity auto-correlation function with faster and 

deeper rebound of correlation even though the pressure is 

a collective property against a wall of the system not like 

the velocity of individual particles. On the other hand, the 

heat flux auto-correlation function is somewhat different 

from the correlation of mechanical quantities: there is no 

rebound of the energy current but just vanishment.

The upper integration limit t—g in the Green-Kubo rela­

tions, Eqs. (1)-(3), may be replaced by a finite value since 

the time-correlation functions decay rapidly to zero. The 

EMD results for the s이f-d 迁fusion coefficient, shear viscosity, 

and thermal conductivity of liquid argon at 94.4 K and 1 

atm are given in Table 2 with those values obtained for 

the same temperature and pressure from Lagrange interpo-

Figure 5. NEMD simulation results for the shear viscosity, in 

the unit of mp of liquid argon at 94.4 K and 1 atm as a function 

of strain rate (ps-1). The white cir이e at zero external fi이d is 

obtained by Lagrange extrapolation.32 □ is an experimental result 

and the black circle represents the EMD result obtained from 

the Green-Kubo relation. The error bars indicate the standard 

deviation.

Figure 6. NEMD simulation results for the thermal conduc­

tivity, in the unit of milli • watt/cm • K, of liquid argon at 

94.4 K and 1 atm as a function of external field (nm-1). The 

white circle at zero external field is obtained by least squares 

fit of the results to a straight line. □ is an experimental result 

and the black circle represents the EMD result obtained from 

the Green-Kubo relation. The error bars indicate the standard 

deviation.

lation32 of experimental data.33 The overall agreement is quite 

good. This means that the Green-Kubo relations are valid 

for simple liquids and that our equilibrium molecular dynam­

ics (EMD) simulation works properly.

The results of non-equilibrium molecular dynamics simu­

lations for the self-diffusion coefficient, shear viscosity, and 

thermal conductivity of argon at 94.4 K and 1 atm are shown
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Table 3. NEMD Simulation Results for the Self-diffusion Coeffi­

cient (Ps), Shear Viscosity (n), and Thermal Conductivity (人)of Liquid 

Argon at 94.4 K and 1.374 g/cm3. Ds and X at Zero External Field 

are Obtained by Least Squares Fit of the Results to a Straight Line 

and T)is Obtained by Lagrange Extrapolation32

External field 

(g*nm/mobps2)
10.0 8.0 6.0 4.0 2.0 0.0

Self-diffusion 17.12 11.36 9.91 8.55 7.18

coefficients + + 士 + ± 4.02

(10-5 cm2/sec) 2.45 2.96 4.03 11.9 21.3

Strain 

rate (ps-1)
10.0 8.0 6.0 4.0 2.0 0.0

Shear 0.06715 0.1002 0.1877 0.3224 0.8927

viscosity ± ± + ± ± 2.133

(mp.) 0.02964 0.04243 0.06644 0.0864 0.1446

field (nnL)
10.0 8.0 6.0 4.0 2.0 0.0

Thermal 1.819 1.848 1.876 1.798 2.460

conductivity ± + ± 土 + 2.309

(10-4cal/sec ,cm*K]} 0.615 0.764 1.016 1.447 2.919

in Figures 4-6 and in Table 3. Each NEMD simulation result 

is averaged over 20,000 time steps after simulation runs of 

10,000~ 20,000 time steps to reach a steady state. The self­

diffusion coefficient and the thermal conductivity at zero ex­

ternal field are obtained by least squares fit of the non-zero 

external field results to a straight line, and the shear visco­

sity is obtained by Lagrange extrapolation at zero external 

field.32

As shown in Figure 4, the standard deviation tells us huge 

fluctuations of simulation results especially in small external 

fields. Nevertheless, the average values of self-diffusion coef­

ficients at non-zero external field are almost on a straight 

line and the least-square-fitted self-diffusion coefficient at 

zero external field is found to be approximately 40% higher 

than the experimental result (□). Comparing with the EMD 

result (•) obtained from the Green-Kubo relation, the NEMD 

result is less accurate.

Figure 5 shows that the Lagrange extrapolated shear vis­

cosity at zero strain rate is within only 8% error when com­

pared with the corresponding experimental result (□). It ap­

pears that as the strain is decreased the shear viscosity in­

creases but it does not seem that the shear viscosity shows 

the square-root behaviour, as Cummings and coworkers ex­

pected in 나leir NEMD studies.21-23 Rather the asymptotic 

relation of the calculated shear viscosity may have an expon­

ential form, • exp (—ay). As shown in the inserted fi­

gure, the logarithm of n，In x\, is plotted against y and a 

strain line (fl = 0.3172 and b = 1.376) is obtained by least 

squares fit. The shear viscosity (•) at zero strain is underes­

timated by 30% in comparison with the experimental result 

(口)

Many studies of NEMD of Lennard-Jones particles for 

thermal conductivity calculation at various temperatures20 in­

cluding the triple-point region12 are reported. Our result at 

94.4 K and 1 atm is agreed with those results. As shown 

in Figure 6, the agreement between our results (NEMD and 

EMD) and the experimental result is quite good. This means 

that the Green-Kubo relation and the Evans algorithm (Sec. 

IL (3)) for thermal conductivity calculation of simple liquids 

are reliable.

Concluding Remarks

In this study, we purpose to perform the equilibrium mo­

lecular dynamics (EMD) and non-equilibrium molecular dy­

namics (NEMD) simulations to determine the thermal trans­

port coefficients (the self-diffusion coefficient, shear viscosity, 

and thermal conductivity) of liquid argon at 94.40 K and 

1 atm, by using a simple Lennard-Jones potential model for 

the interactions between the argon atoms at the microscopic 

level. The results obtained from the EMD simulations of 

Lennard-Jones model using the Green-Kubo relations (Sec. 

I) indicate that the time-correlation functions show well-be­

haved smooth curves which is integrated to give the reason­

able thermal transport coefficients directly. The results of 

the NEMD simulations of the same model give quite good 

overall agreements even though there are more or less statis­

tical errors. During simulations, it is also observed that the 

Gauss's principle of least constraint for constant trsnslational 

temperatures works excellent, which means the achievement 

of ± 0.01% accuracy in temperatures.

To conclude, what is clear is that based on this work, 

the application of the Green-Kubo relations and the NEMD 

algorithm for thermal transport coefficients of simple liquids 

is successful. Further study should assess the ability of cal­

culation of another transport coefficient, the bulk viscosity 

k, this would not be easily done because of the unknown 

external field applied to the system to calculate k or because 

it may need NPT ensemble NEMD simulation.
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In a recent paper1 we reported equilibrium (EMD) and non-equilibrium (NEMD) molecular dynamics simulations 

of liquid argon using the Green-Kubo relations and NEMD algorithms to calculate the thermal transport coefficients- 

the self-diffusion coefficient, shear viscosity, and thermal conductivity. The overall agreement with experimental data 

is quite 잉ood. In this paper the same technique is applied to calculate the thermal transport coefficients of liquid 

water at 298.15 K and 1 atm using TIP4P model for the interaction between water molecules. The EMD results 

show difficulty to apply the Green-Kubo relations since the time-correlation functions of liquid water are oscillating 

and not decaying rapidly enough except the velocity auto-correlation function. The NEMD results are found to be 

within approximately ± 30~40% error bars, which makes it possible to apply the NEMD technique to other molecular 

liquids.

Introduction

In recent years, the non-equilibrium molecular dynamics 

(NEMD) simulations have emerged as a powerful tool for 

the study of thermal transport coefficients - self-diffusion co­

efficient, shear and bulk viscosities, and thermal conductivity- 

of both simple and molecular fluids. Recent development in­

clude the sllod algorithm2,3 for shear viscosity, the color cur­

rent technique4 for self-diffusion coefficient, the Evans algo­

rithm5,6 for thermal conductivity, and the use of Gauss's prin­

ciple4,7 of least constraint for isokinetic and/or isobaric ense­

mble simulations. More recently a homogeneous NEMD si­

mulation8 to investigate the nature of liquid surfur under 

extreme shear using the potential model developed by Stil- 

linger and Weber9 which involves three-body interaction is 

reported. Furthermore the principle of the color current al­

gorithm is applied to non-equilibrium Brownian dynamics 

(NEBD) simulations,10 in which the non-equilibrium state is 

achived by including a constant electric field in the Smolu- 

chowski dynamics, to calculate the self-diffusion coefficients 

of the ions in a model e!ectr이yte solutions.

In a recent paper1 we reported equilibrium molecular dy­

namics (Green-Kubo relations11) and non-equilibrium mole­

cular dynamics simulations of liquid argon at 94.4 K and 

1 atm to determine the thermal transport coefficients. The 

overall agreement of the EMD and NEMD results is quite 

good in comparison with experimental data. This means that 

the Green-Kubo r이ations and the NEMD algorithms are re-


