• Title/Summary/Keyword: Chemical Equilibrium

Search Result 1,136, Processing Time 0.028 seconds

Adsorption Characteristics and Parameters of Acid Black and Quinoline Yellow by Activated Carbon (활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터)

  • Yi, Kyung Ho;Hwang, Eun Jin;Baek, Woo Seung;Lee, Jong-Jib;Dong, Jong-In
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.186-195
    • /
    • 2020
  • The isothermal adsorption, dynamic, and thermodynamic parameters of Acid black (AB) and Quinoline yellow (QY) adsorption by activated carbon were investigated using the initial concentration, contact time, temperature, and pH of the dyes as adsorption parameters. The adsorption equilibrium data fits the Freundlich isothermal adsorption model, and the calculated Freundlich separation factor values found that activated carbon can effectively remove AB and QY. Comparing the kinetic data showed that the pseudo second order model was within 10% error in the adsorption process. The intraparticle diffusion equation results were divided into two straight lines. Since the slope of the intraparticle diffusion line was smaller than the slope of the boundary layer diffusion line, it was confirmed that intraparticle diffusion was the rate-controlling step. The thermodynamic experiments indicated that the activation energies of AB and QY were 19.87 kJ mol-1 and 14.17 kJ mol-1, which corresponded with the physical adsorption process (5 ~ 40 kJ mol-1). The adsorption reaction was spontaneous because the free energy change in the adsorption of AB and QY by activated carbon was negative from 298 to 318 K. As the temperature increased, the free energy value decreased resulting in higher spontaneity. Adsorption of AB and QY by activated carbon showed the highest adsorption removal rate at pH 3 due to the effect of anions generated by dissociation. The adsorption mechanism was electrostatic attraction.

Removal of Harmful Gas with Wood or Bark Charcoal (목질 및 수피탄화물에 의한 기상 유해가스 흡착제거)

  • Jo, Tae-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.69-76
    • /
    • 2008
  • To estimate removal ability of harmful gas by charcoal, we carbonized Red oak (Quercus mongolica Fischer) wood and Larch (Larix leptoepis) bark at $300^{\circ}C$, $600^{\circ}C$ and $900^{\circ}C$ for 1 hour. Gas removal ratios was increased with carbonization temperature but there is no difference between wood and bark charcoal. In the case of bad smell and VOC gas, woody charcoal including bark charcoal carbonized at $300^{\circ}C$ showed low removal ratio, less than 50%, whereas woody charcoals which was carbonized at more than $600^{\circ}C$ reached almost 100% removal ratio to bad smell gas such as trimethylamine, methymercaptan, hydrogen sulfide, and to VOC such as benzene, toluene, xylene in $5{\ell}$ tedler bag with each gas of 100 ppm. It was thought that because charcoals carbonized at high temperature, for example, $600^{\circ}C$ or $900^{\circ}C$ have enough specific surface area to adsorb gas of 100 ppm. Moreover these charcoals rapidly removed almost gas in 10 minutes. However, acetylene, $SO_2$ and $NO_2$, charcoals which was carbonized more than $600^{\circ}C$ and which showed high removal ratio had low gas removal ratio of 40% at even 4 hours adsorption. It was concluded that adsorptive ability of woody charcoal was mainly influenced with carbonizing temperature, so that different charcoals carbonized at different temperature brings different gas removal ratio because these charcoals have not only different physical factor such as specific surface area but different chemical characteristic such as functional group, expected.

Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster (MMH-NTO 이원추진제 추력기의 배기가스 거동 해석 연구)

  • Kim, Hyeonah;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.300-309
    • /
    • 2017
  • A spacecraft obtains a reaction momentum required for an orbit correction and an attitude control by exhausting a combustion gas through a small thruster in space. If the exhaust plume collides with spacecraft surfaces, it is very important to predict the exhaust plume behavior of the thruster when designing a satellite, because a generated disturbance force/torque, a heat load and a surface contamination can yield a life shortening and a reduction of the spacecraft function. The purpose of the present study is to ensure the core technology required for the spacecraft design by analyzing numerically the exhaust gas behavior of the 10 N class bipropellant thruster for an attitude control of the spacecraft. To do this, calculation results of chemical equilibrium reaction between a MMH for fuel and a NTO for oxidizer, and continuum region of the nozzle inside are implemented as inlet conditions of the DSMC method for the exhaust plume analysis. From these results, it is possible to predict a nonequilibrium expansion such as a species separation and a backflow in the vicinity of the bipropellant thruster nozzle.

Sorption Characteristics of Binary Mixture of Sugar and Sodium Chloride (저장상대습도(貯藏相對濕度)에 따른 당(糖)과 소금 이상혼합물(二相混合物)의 흡습특성(吸濕特性))

  • Oh, Hoon-Il;Kim, Woo-Jung;Park, Nae-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.19-26
    • /
    • 1983
  • A study was designed to investigate the sorption characteristics of binary mixtures of NaCl and sucrose or glucose stored at various relative humidities ranging from 46% to 92%. At low relative humidity below RH 65%, the sorption equilibrium was easily achieved, whereas at higher relative humidity values over 73%, all of the mixtures tended to cintinously absorb moisture with increase in storage time. A linear equation of log $({\frac{dw}{dt}})$ = a log(t) + log(b) was found to be valid between the sorption rate and storage time with respect to storage humidities. In sucrose-NaCl mixture, the slope showed a increasing tendency as the percentage of NaCl increased in the mixture, while that of glucose-NaCl mixture failed to show a definite trend. Plateaus were obtained when the amount of water absorbed was plotted on the X axis and the percent composition of mixture on the Y axis at different storage time. The shape of plateau was varied with respect to the kind of sugar-NaCl mixture, composition of the mixture and relative humidities. A linearity was found between log(1-Aw) and the amount of water absorbed over the Aw range 0.73-0.92 and the slope was affected by the kind and composition of sugar-NaCl mixtures.

  • PDF

Nitrate and Phosphate Adsorption Properties by Aminated Vinylbenzyl Chloride Grafted Polypropylene Fiber (아민형 PP-g-VBC의 NO3-N과 PO4-P 흡착특성)

  • Lee, Yong-Jae;Song, Jee-June;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.543-550
    • /
    • 2016
  • Amine-type PP-g-VBC-EDA adsorbent, which possesses anionic exchangeable function, was prepared through photoinduced graft polymerization of vinylbenzyl chloride (VBC) onto polypropylene non-woven fabric and subsequent amination reaction using ethylenediamine (EDA). Adsorption characteristics of anionic nutrients on the PP-g-VBC-EDA adsorbent have been studied by batch adsorption experiments. The equilibrium data well fitted the Langmuir isotherm model, and the maximum monolayer sorption capacity was found to be 59.9 mg/g for $NO_3-N$ and 111.4 mg/g for $PO_4-P$. The adsorption energies were higher than 8 kJ/mol indicating anion-exchange process as the primary adsorption mechanism. The pseudo-second order kinetic model described well the kinetic data and resulted in the activation energy of 9.8-36.7 kJ/mol suggesting that the overall rates of $NO_3-N$ and $PO_4-P$ adsorption are controlled by the chemical process. Thermodynamic parameters such as ${\Delta}G^o$, ${\Delta}H^o$ and ${\Delta}S^o$ indicated that the adsorption nature of PP-g-VBC-EDA for anionic nutrients is spontaneous and exothermic. The PP-g-VBC-EDA could be regenerated by washing with 0.1 N HCl.

Study on Material Characteristics and Firing Temperature of Jar Coffins from Oryang-dong Kiln Site and Jeongchon Tomb, Naju, Korea (나주 오량동 유적 및 정촌 고분 출토 옹관의 재료적 특성 및 소성온도 연구)

  • Kim, Su Kyoung;Jin, Hong Ju;Jang, Sungyoon
    • Journal of Conservation Science
    • /
    • v.34 no.3
    • /
    • pp.179-193
    • /
    • 2018
  • This study is aimed to investigate the provenance of raw materials and firing temperature of jar coffins excavated from the Oryang-dong kiln site and Jeonchon tomb site, Naju, Korea. Most of jar coffin samples shows same range of magnetic susceptibility and have gray color, while 404 and 405 of Jeongchon site are reddish yellow. In some samples fired at high temperature, the water absorption at the mouth rim and body part of same jar coffin were 3.50% and 7.56% respectively. It means that heat transfer and equilibrium in the kiln was not properly continued and the heat energy transferred to the mouth rim and the body part was different. In the petrographic analysis, As a tempering materials, biotite, weathered quartz and feldspar were added in the jar coffins of Oryang-dong site, and biotite, polycrystalline quartz and feldspar in it of Jeongchon site. Tempering materials were found more in the body than in the mouth rim of same jar coffin of Oryang-dong site. It seemed that some samples were fired at over 1,000 to $1,100^{\circ}C$, which showed vitrified texture in the scanning electron images and the rest of samples were fired at below $900^{\circ}C$. Due to similarity of chemical compositions, it is estimated that jar coffins of Jeongchon tomb were produced and supplied from Oryang-dong kiln site. However, the slight difference of some trace elements distribution of samples is attributed to the selection of clay depending on the location.

Characteristics of Isotherm, Kinetic and Thermodynamic Parameters for the Adsorption of Acid Red 66 by Activated Carbon (활성탄에 의한 Acid Red 66의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.30-38
    • /
    • 2020
  • The kinetic and thermodynamic parameters of Acid Red 66, adsorbed by granular activated carbon, were investigated on areas of initial concentration, contact time, and temperature. The adsorption equilibrium data were applied to Langmuir, Freundlich, Temkin, Redlich-Peterson, and Temkin isotherms. The agreement was found to be the highest in the Freundlich model. From the determined Freundlich separation factor (1/n = 0.125 ~ 0.232), the adsorption of Acid Red 66 by granular activated carbon could be employed as an effective treatment method. Temkin's constant related to adsorption heat (BT = 2.147 ~ 2.562 J mol-1) showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo-second order model with good agreement. The results of the intraparticle diffusion equation showed that the inclination of the second straight line representing the intraparticle diffusion was smaller than that of the first straight line representing the boundary layer diffusion. Therefore, it was confirmed that intraparticle diffusion was the rate-controlling step. From thermodynamic experiments, the activation energy was determined as 35.23 kJ mol-1, indicating that the adsorption of Acid Red 66 was physical adsorption. The negative Gibbs free energy change (ΔG = -0.548 ~ -7.802 kJ mol-1) and the positive enthalpy change (ΔH = +109.112 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, respectively. The isosteric heat of adsorption increased with the increase of surface loading, indicating lateral interactions between the adsorbed dye molecules.

Determination of the Langmuir and Temkin Adsorption Isotherms of H for the Cathodic H2 Evolution Reaction at a Pt/KOH Solution Interface Using the Phase-Shift Method

  • Chun Jang-H.;Jeon Sang-K.;Chun Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • The phase-shift method for determining the Langmuir, Frumkin, and Temkin adsorption isotherms ($\theta_H\;vs.\;E$) of H for the cathodic $H_2$ evolution reaction (HER) at a Pt/0.1 M KOH solution interface has been proposed and verified using cyclic voltammetric, differential pulse voltammetric, and electrochemical impedance techniques. At the Pt/0.1 M KOH solution interface, the Langmuir and Temkin adsorption isotherms ($\theta_H\;vs.\;E$), the equilibrium constants ($K_H=2.9X10^{-4}mol^{-1}$ for the Langmuir and $K_H=2.9X10^{-3}\exp(-4.6\theta_H)mol^{-1}$ for the Temkin adsorption isotherm), the interaction parameters (g=0 far the Langmuir and g=4.6 for the Temkin adsorption isotherm), the rate of change of the standard free energy of $\theta_H\;with\;\theta_H$ (r=11.4 kJ $mol^{-1}$ for g=4.6), and the standard free energies (${\Delta}G_{ads}^{\circ}=20.2kJ\;mol^{-1}$ for $k_H=2.9\times10^{-4}mol^{-1}$, i.e., the Langmuir adsorption isotherm, and $16.7<{\Delta}G_\theta^{\circ}<23.6kJ\;mol^{-1}$ for $K_H=2.9\times10^{-3}\exp(-4.6\theta_H)mol^{-1}$ and $0.2<\theta_H<0.8$, i.e., the Temkin adsorption isotherm) of H for the cathodic HER are determined using the phase-shift method. At intermediate values of $\theta_H$, i.e., $0.2<\theta_H<0.8$, the Temkin adsorption isotherm ($\theta_H\;vs.\;E$) corresponding to the Langmuir adsorption isotherm ($\theta_H\;vs.\;E$), and vice versa, is readily determined using the constant conversion factors. The phase-shift method and constant conversion factors are useful and effective for determining the Langmuir, Frumkin, and Temkin adsorption isotherms of intermediates for sequential reactions and related electrode kinetic and thermodynamic data at electrode catalyst interfaces.

Effect of Storage Temperature and Humidity on Water Adsorption and Rancidity of Peanuts (저장 온습도가 땅콩의 흡습 및 산패에 미치는 영향)

  • Koh, Ha-Young;Kwon, Yong-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.2
    • /
    • pp.216-222
    • /
    • 1989
  • Water adsorption characteristics and lipid rancidity of fresh and roasted Peanuts were investigated at $25{\sim}60^{\circ)C$ and $11{\sim}85%$ relative humidity. peanuts of 50g were reached to the equilibrium water content in 14 days at $40^{\circ}C$, in 30 days at $25^{\circ}C$, respectively, in all of the relative humidity. BET monolayer water contents were $2.19{\sim}2.69%$ in fresh peanuts and $2.47{\sim}2.67%$ in roasted ones as dry basis at $25{\sim}40^{\circ)C$. Zero order reaction rate of peroxide value(POV) were $8{\sim}21times$ lower as $0.032day^{-1}$ and $0.142day^{-1}$in fresh peanuts than those of $0.663day^{-1}$ and $1.120day^{-1}$ in roasted peanuts at water activity of 0.51, but those were showed the relatively smaller differences according to the water activity and temperature. The critical peroxide value(POV) and carbonyl value(CV) were determined as 15.0meq/kg and 4.7meq/kg at $60^{\circ}C$ $0.51a_w$ by the regression analysis between chemical and sensory evaluation.

  • PDF

Determination of Adsorption Isotherms of Hydroxide ata Platinum Electrode Interface Using the Phase-Shift Method and Correlation Constants

  • Chun, Jin-Y.;Chun, Jang-H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.219-228
    • /
    • 2007
  • The phase-shift method and correlation constants, i.e., the electrochemical impedance spectroscopy (EIS) techniques for studying linear relationships between the behaviors (${\varphi}\;vs.\;E$) of the phase shift ($0^{\circ}{\leq}-{\varphi}{\leq}90^{\circ}$) for the optimum intermediate frequency and those (${\theta}\;vs.\;E$) of the fractional surface coverage ($1{\geq}{\theta}{\geq}0$), have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$) of H for the cathodic $H_2$ evolution reaction (HER) at noble and transition-metal/aqueous solution interfaces. At the Pt/0.1 MKOH aqueous solution interface, the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$), equilibrium constants ($K=5.6{\times}10^{-10}\;mol^{-1}\;at\;0{\leq}{\theta}<0.81$, $K=5.6{\times}10^{-9}{\exp}(-4.6{\theta})\;mol^{-1}\;at\;0.2<{\theta}<0.8$, and $K=5.6{\times}10^{-10}{\exp}(-12{\theta})\;mol^{-1}\;at\;0.919<{\theta}{\leq}1$, interaction parameters (g = 4.6 for the Temkin and g = 12 for the Frumkin adsorption isotherm), rates of change of the standard free energy ($r=11.4\;kJ\;mol^{-1}$ for g=4.6 and $r=29.8\;kJ\;mol^{-1}$ for g=12), and standard free energies (${\Delta}G_{ads}^0=52.8\;kJ\;mol^{-1}\;at\;0{\leq}{\theta}<0.81,\;49.4<{\Delta}G_{\theta}^0<56.2\;kJ\;mol^{-1}\;at\;0.2<{\theta}<0.8$ and $80.1<{\Delta}_{\theta}^0{\leq}82.5\;kJ\;mol^{-1}\;at\;0.919<{\theta}{\leq}1$) of OH for the anodic $O_2$ evolution reaction (OER) are also determined using the phase-shift method and correlation constants. The adsorption of OH transits from the Langmuir to the Frumkin adsorption isotherm (${\theta}\;vs.E$), and vice versa, depending on the electrode potential (E) or the fractional surface coverage (${\theta}$). At the intermediate values of ${\theta}$, i.e., $0.2<{\theta}<0.8$, the Temkin adsorption isotherm (${\theta}\;vs.\;E$) correlating with the Langmuir or the Frumkin adsorption isotherm (${\theta}\;vs.\;E$), and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are accurate and reliable techniques to determine the adsorption isotherms and related electrode kinetic and thermodynamic parameters. They are useful and effective ways to study the adsorptions of intermediates (H, OH) for the sequential reactions (HER, OER) at the interfaces.