• Title/Summary/Keyword: Chemical Admixture

Search Result 192, Processing Time 0.033 seconds

A Study on the $Cl^-$ ion property of antiwashout concrete using the superplasticizer agent (고유동화재를 사용한 수중불분리콘크리트의 Cl 이온 특성고찰)

  • 김동석;최재웅;구본창;하재담;엄태형;신연식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.117-122
    • /
    • 1999
  • The antiwashout concrete which is a type of specific concrete is manufactured by using a plenty of superplasticizer with the non-dispersible underwater concrete admixture, and the application of it on construction site is being increased. But when we measure choride ion content by using the potentiographic tester, because it is over total chloride ion content(0.3kg/㎥ under) of Korean Concrete Specification, the claim of construction site is being presented on the quality of antiwashout concrete. Accordingly, hte aim of this study is to verify actual chloride ion content of antiwashout concrete by chloride ion analysis due to chemical admixtures by performance of antiwashout concrete. In conclusion the actual chloride ion content of antiwashout concrete is overestimated by anion($OH^-, SO4^{-2}, S^{-2}, etc) of chemical admixtures, and is proved to be as low as that of ordinary concrete.

  • PDF

A Study on the Mobility Properties of Cement Paste by Fine Fowers of Pozzolan Chemical Adixtures (포졸란계 미분말 및 화학혼화제에 의한 시멘트페이스트의 유동특성에 관한 연구)

  • 김도수;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.25-29
    • /
    • 1995
  • To perform high-strength of concrete, fine powers of pozzolan such as fly ash, silica fume mixed with cement. But mobility of cement and concrete decreased due to using of these powers. To control decrease of this mobility, it is required that mobility is improved by using of chemical admixture such as superplasticizer. We used admixtures -NSF, NM-2, NT-2 etc- in order to improve mobility of cement paste being substituted by 10, 20% of pozzolans respectively. It proved that optimum dosage of NSF, NT-2 was 2.0% for being substituted 10%, 3.0% for 20% so as to increase mobility of cement paste mixed paste mixed with fine powers of pozzolan at W/C=0.40.

  • PDF

Finite Element Analysis of Chloride Ion Intrusion into Coastal Concrete Structure

  • Kim, Eun-Kyum;Shin, Chee-Bur;Yeau, Kyong-Yun
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.175-180
    • /
    • 1999
  • In order to predict the onset of the corrosion of steel bars in concrete, a mathematical model was presented to observe the diffusion of chloride ion in aqueous phase, the adsorption and desorption of chloride ions to and from the surface of solid phase of concrete, and the chemical reaction or chloride ions with solid phase. The finite element method was employed to carry out the numerical analysis. The chlorides enetrating through the wall of the concrete structure from the external environment and the chlorides contained in the concrete admixture were confirmed to be two important factors to determine the onset of the corrosion of steel bars.

  • PDF

Viscosity and Thermodynamic Properties of Liquid Sulfur

  • Chang, Man-Chai;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.4
    • /
    • pp.133-139
    • /
    • 1982
  • It has been presumed that the molten sulfur above $159^{\circ}C$ consists of an equilibrium mixture of $S_8$ rings and $S_x$ polymers where the number average degree of polymerization, P, is large. But it is known that admixture of halogens with liquid sulfur greatly reduce the viscosity. Constructing a new equilibrium equation, it is possible to evaluate the viscosity when halogens are added to liquid sulfur. Calculated viscosity is in good agreement with experimental values. Using the proposed model, the thermodynamic properties of liquid sulfur are also calculated over a wide range of temperature which the sulfur exists as the polymer.

Analysis of concrete characteristic depending on chemical admixtures changing component content ratio (화학혼화제의 성분함유율 변화에 따른 콘크리트의 특성분석)

  • Ryu, Hyun-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.85-91
    • /
    • 2009
  • W/C and unit volume, which significantly affect quality of concrete related to strength and durability, are regulated at below $185kg/m^3$ for regular concrete generally used in standard specification for constructions. The aim of this research is to develop chemical admixture and find out its potential use by identifying characteristics of admixtures added to soft concrete and hardening concrete, of which content ratio of component for each type of admixtures is subject to change in accordance with unit volume within KS' allowable range. Sodium gluconate, polyoxyethylene nonylphenyl ether, poly carboxylic copolymer in slump, which is characteristic of soft concrete, are deemed highly sensitive while there is no air entrainment except for $10\sim70%$ in WE, WR component content ratio and NP. In hardening concrete, strength in general showed higher action in compressive strength and tensile strength than in plain strength. Use of proper AE agent and AE water reducing agent at the same time is deemed to be used as chemical admixtures capable of manufacturing high-quality, high-quantity concrete.

A Experimental Study on Autogenous Shrinkage properties of Ultra High-Strength Concrete Using Expansion Agent and Shrinkage-reducing (수축저감제 및 팽창재를 조합 사용한 초고강도 콘크리트의 자기수축 특성에 관한 실험적 연구)

  • Park, Hyun;Park, Heung-Lee;Kim, Hak-Young;Paik, Min-Su;Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.73-76
    • /
    • 2009
  • In ultra-high-strength concrete, chemical shrinkage is larger than drying shrinkage due to using a large amount of cement and admixtures, and this is a factor deteriorating the quality of structures. Thus, we need a new technology for minimizing the shrinkage strain of ultra-high-strength concrete. So, this study have prepared super-high-strength concrete with specified mixing design strength of over 100MPa and have evaluated a method of reducing chemical shrinkage by using expander and shrinkage-reducing agent. According to the results of this study, with regard to the change in length by chemical shrinkage, an expansion effect was observed until the age of seven days. The expansion effect was higher than previous research that used only expander or shrinkage reducing agent. In addition, ultra-high-strength concrete showed a shrinkage rate that slowed down with time, and the effect of the addition of expander material on compressive strength was insignificant. That is shown that required more database to be accumulated through experimental research for the shrinkage strain of members.

  • PDF

A Round Robin Study of Solid Content Test and Applicability Estimation of FT-IR Analysis for Chemical Admixtures (다자비교시험을 통한 화학혼화제 고형분량 시험법의 신뢰성 및 FT-IR 분석에 대한 효용성 평가)

  • Kim, Jin-Cheol;Yoo, Hyeok-Jin;Kim, Hong-Sam;Park, Ko-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.695-703
    • /
    • 2015
  • Acceptance criteria for chemical admixtures of cement concrete were investigated in domestic and international specifications. The reliability was verified for solid content test method of chemical admixture examined statistical analysis by round robin test. The applicability of FT-IR spectroscopy for qualitative measurement of multi-compound chemical admixtures verified. From solid content experimental results, outlier analysed using Cochran, Grubbs and Dickson's Q test. Repeatability and reproducibility standard deviation for solid content results showed 0.25 and 0.098% respectively according to KS A ISO 5725-2 procedure, it can be confirmed reliability of test methods. FT-IR spectrum of liquefied or oven-dried chemical admixtures condition showed big differences. It is needed that the FT-IR analysis is performed on dry material. However there's no difference with the applicability of FT-IR spectroscopy for multi-compound chemical admixtures. So the utility of method analysis could not identify.

Chloride Diffusion Coefficient at Reference Time for High Performance Concrete for Bridge Pylons in Marine Environment (해상교량 주탑용 고성능 콘크리트의 기준재령 염소이온 확산계수)

  • Yoon, Chul-Soo;Kim, Ki-Hyun;Yang, Woo-Yong;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.435-444
    • /
    • 2012
  • High performance concrete mixes are selected and corresponding test specimens are made for the study of chloride diffusion coefficient at reference time. The concrete mixes were same designs as those used in construction of bridges located in a marine environment. Mix design variables included binder type, water-to-binder ratio, mineral admixtures to total binder weight substitution ratio, fine aggregate source, chemical water reducer admixture type for high strength and high flowability, and target slump or slump flow. The test results showed that the diffusion coefficients at reference time varied significantly according to the type of mineral admixtures and their substitution ratios. A model for diffusion coefficient at reference time considering the type of mineral admixture and the substitution ratio was developed. Diffusion coefficients from the developed model were compared with those from literature review, a previous model, and additional test results. All of the comparisons verified that the developed model can reasonably predict diffusion coefficients and the application of the model to the durability design against chloride penetration is appropriate.

Analysis on the Harmful Effect of Recycled Powder and Properties of Concrete Admixture by Recycled Powder (재생미분말의 유해성 분석 및 재생미분말을 혼입한 콘크리트의 특성)

  • Lee, Seung-Hwan;Choi, Ik-Chang;Han, Sang-Kuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.289-295
    • /
    • 2008
  • The disposal of constructive waste is emerging as a national and social issue and the recycled powder generated by the production of reproductive aggregate is all being abolished or buried Analysis on the harmful effect of recycled powder indicated that because it contained massive cytotoxicity, it could derive secondary pollution to soil and subterranean water. This study set on an idea that one way to recycle recycled powder was to use it as a compound of concrete. In order to study that prospect, recycled powder, instead of cement, was mixed and a comparative analysis was conducted on the mechanical properties and workability. From experimental results, it was judged that application of recycled powder of cement replacement ratio below 20% was available with chemical admixtures. Also application of recycled powder was available to high strength concrete.

  • PDF

Assessment of strength and durability of bagasse ash and Silica fume concrete

  • Singaram, Jayanthi;Kowsik, Radhika
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.801-814
    • /
    • 2016
  • An alternative type of building system with masonry units is extensively used nowadays to reduce the emission of CO2 and embodied energy. Long-term performance of such structures has become essential for sustaining the building technology. This study aims to assess the strength and durability properties of concrete prepared with unprocessed bagasse ash (BA) and silica fume (SF). A mix proportion of 1:3:3 was used to cast concrete cubes of size $100mm{\times}100mm{\times}100mm$ with various replacement levels of cement and tested. The cubes were cast with zero slump normally adopted in the manufacturing of hollow blocks. The cubes were exposed to acid attack, alkaline attack and sulphate attack to evaluate their durability. The mass loss and damages to concrete for all cases of exposures were determined at 30, 60, and 90 days, respectively. Then, the residual compressive strength for all cases was determined at the end of 90 days of durability test. The results showed that there was slight difference in mass loss before and after exposure to chemical attack in all the cases. Though the appearance was slightly different than the normal concrete the residual weight was not affected. The compressive strength of 10% bagasse ash (BA) as a replacement for cement, with 10% SF as admixture resulted in better strength than the normal concrete. Hence concrete with 10% replacement with BA along with 10% SF as admixture was considered to be durable. Besides solid concrete cubes, hollow blocks using the same concrete were casted and tested simultaneously to explore the possibility of production of masonry units.