• Title/Summary/Keyword: Chemical Activation

Search Result 1,790, Processing Time 0.026 seconds

Adsorption Characteristics of Brilliant Green by Coconut Based Activated Carbon : Equilibrium, Kinetic and Thermodynamic Parameter Studies (야자계 입상 활성탄에 의한 brilliant green의 흡착 특성 : 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.198-205
    • /
    • 2019
  • The adsorption equilibrium, kinetic, and thermodynamic parameters of brilliant green adsorbed by coconut based granular activated carbon were determined from various initial concentrations ($300{\sim}500mg\;L^{-1}$), contact time (1 ~ 12 h), and adsorption temperature (303 ~ 323 K) through batch experiments. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Harkins-Jura, and Elovich isotherm models. The estimated Langmuir dimensionless separation factor ($R_L=0.018{\sim}0.040$) and Freundlich constant ($n^{-1}=0.176{\sim}0.206$) show that adsorption of brilliant green by activated carbon is an effective treatment process. Adsorption heat constants ($B=12.43{\sim}17.15J\;mol^{-1}$) estimated by the Temkin equation corresponded to physical adsorption. The isothermal parameter ($A_{HJ}$) by the Harkins-Jura equation showed that the heterogeneous pore distribution increased with increasing temperature. The maximum adsorption capacity by the Elovich equation was found to be much smaller than the experimental value. The adsorption process was best described by the pseudo second order model, and intraparticle diffusion was a rate limiting step in the adsorption process. The intraparticle diffusion rate constant increased because the dye activity increased with increases in the initial concentration. Also, as the initial concentration increased, the influence of the boundary layer also increased. Negative Gibbs free energy ($-10.3{\sim}-11.4kJ\;mol^{-1}$), positive enthalpy change ($18.63kJ\;mol^{-1}$), and activation energy ($26.28kJ\;mol^{-1}$) indicate respectively that the adsorption process is spontaneous, endothermic, and physical adsorption.

Characteristics of Equilibrium, Kinetic and Thermodynamic for Adsorption of Acid Blue 40 by Activated Carbon (활성탄에 의한 Acid Blue 40 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.592-599
    • /
    • 2018
  • The kinetics and thermodynamics of the adsorption of acid blue 40 from an aqueous solution by activated carbon were examined as a function of the activated carbon dose, pH, temperature, contact time, and initial concentration. The adsorption efficiency in a bathtub was increased at pH 3 and pH 11 due to the presence of sufonate ions ($SO_3{^-}$) and amine ions ($NH_2{^+}$). The equilibrium adsorption data were fitted to the Langmuir, Freundlich and Temkin isotherms. The results indicated that the Langmuir model provides the best correlation of the experimental data. The separation factor of the Langmuir and Freundlich model showed that the adsorption treatment of acid blue 40 by activated carbon could be an effective adsorption process. The adsorption energy determined by the Temkin equation showed that the adsorption step is a physical adsorption process. Kinetics analysis of the adsorption process of acid blue 40 on activated carbon showed that a pseudo second order kinetic model is more consistent than a pseudo second order kinetic model. The estimated activation energy was 42.308 kJ/mol. The enthalpy change (80.088 J/mol) indicated an endothermic process. The free energy change (-0.0553 ~ -5.5855 kJ/mol) showed that the spontaneity of the process increased with increasing adsorption temperature.

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon (석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2021
  • Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

The Protective Effect of Zizania latifolia Extract against t-BHP-induced Oxidative Stress in HepG2 Cells (고장초 추출물의 t-BHP로 산화적 손상이 유도된 HepG2 세포 보호 효과)

  • Park, Se-Ho;Lee, Jae-Yeul;Yang, Seun-Ah;Bang, Daesuk;Jhee, Kwang-Hwan
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.338-345
    • /
    • 2021
  • Zizania latifolia has long been used as a tea for both edible and medicinal purposes. However, research into the use of Z. latifolia as a high value-added edible material is lacking. In a previous study, we confirmed that tricin is the major component in Z. latifolia. In this study, we investigated the protective effect of a Z. latifolia extract (ZLE). Toxicity tests of ZLE or tricin on HepG2 cells revealed no toxicity due to ZLE or tricin at all concentrations used. The reduction in cell viability by tert-butyl hydroperoxide (t-BHP) was suppressed by treatment with ZLE or tricin. In addition, ZLE or tricin effectively inhibited the production of reactive oxygen species (generation of hydrogen peroxide, alkoxy free radicals, and peroxyl free radicals by t-BHP) and oxidative damage. ZLE or tricin treatments also increased the protein expression of superoxide dismutase 1 (SOD1), catalase, heme oxygenase-1 (HO-1), and nuclear factor erythroid-related factor 2 (Nrf2), which are known as antioxidant enzymes, suggesting that the protective effect of ZLE is related to activation of tricin. Taken together, the results indicate that Z. latifolia can be developed as a functional food material for improving liver function.

Benzo[a]pyrene Cytotoxicity Tolerance in Testicular Sertoli Cells Involves Aryl-hydrocarbon Receptor and Cytochrome P450 1A1 Expression Deficiencies

  • Kim, Jin-Tac;Park, Ji-Eun;Lee, Seung-Jin;Yu, Wook-Joon;Lee, Hye-Jeong;Kim, Jong-Min
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2021
  • Benzo[a]pyrene (B[a]P) is a potent carcinogen and is classified as an endocrine-disrupting chemical. In mammalian testes, Sertoli cells support spermatogenesis. Therefore, if these cells are negatively affected by exposure to xenotoxic chemicals, spermatogenesis can be seriously disrupted. In this context, we evaluated whether mouse testicular TM4 Sertoli cells are susceptible to the induction of cytotoxicity-mediated cell death after exposure to B[a] P in vitro. In the present study, while B[a]P and B[a]P-7,8-diol were not able to induce cell death, exposure to BPDE resulted in cell death. BPDE-induced cell death is accompanied by the activation of caspase-3 and caspase-7. Depolarization of the mitochondrial membrane and cytochrome c release from mitochondria were observed in benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE)-treated cells. These results indicate that TM4 cells are susceptible to apoptosis in a caspase-dependent manner. Western blot and reverse transcription-polymerase chain reaction (RT-PCR) analyses showed that aryl hydrocarbon receptor (AhR) expression was almost undetectable in TM4 cells and that its expression was not altered after B[a]P treatment. This indicates that TM4 cells are nearly AhR-deficient. In TM4 cells, the CYP1A1 protein and its activity were not present. From these results, it is clear that AhR may be a prerequisite for CYP1A1 expression in TM4 cells. Therefore, TM4 cells can be referred to as CYP1A1-deficient cells. Thus, TM4 Sertoli cells are believed to have a rigid and protective cellular machinery against genotoxic agents. In conclusion, it is suggested that tolerance to B[a]P cytotoxicity is associated with insufficient AhR and CYP1A1 expression in testicular Sertoli cells.

Adsorption Characteristics and Thermodynamic Parameters of Acid Fuchsin on Granular Activated Carbon (입상 활성탄에 대한 Acid Fuchsin의 흡착특성과 열역학 파라미터)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • The adsorption of Acid Fuchsin (AF) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetics and thermodynamic parameters by experimenting with the initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH effect experiment, the adsorption of AF on activated carbon showed a bathtub type with increased adsorption at pH 3 and 11. The adsorption equilibrium data of AF fit well with the Freundlich isotherm model, and the calculated separation factor (1/n) value was found in which activated carbon can effectively remove AF. The pseudo-second-order kinetic model fits well within 7.88% of the error percent in the adsorption process. According to Weber and Morris's model plot, it was divided into two straight lines. The intraparticle diffusion rate was slow because the stage 2 (intraparticle diffusion) slope was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was a rate-controlling step. The activation energy of AF (13.00 kJ mol-1) corresponded to the physical adsorption process (5 - 40 kJ mol-1). The free energy change of the AF adsorption by activated carbon showed negative values at 298-318 K. As the spontaneity increased with increasing temperature. The adsorption of AF was an endothermic reaction (ΔH = 22.65 kJ mol-1).

Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons

  • Huang, Qingxia;Lou, Tingting;Lu, Jing;Wang, Manying;Chen, Xuenan;Xue, Linyuan;Tang, Xiaolei;Qi, Wenxiu;Zhang, Zepeng;Su, Hang;Jin, Wenqi;Jing, Chenxu;Zhao, Daqing;Sun, Liwei;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.759-770
    • /
    • 2022
  • Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD+-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.

Effect of serotonin on the cell viability of the bovine mammary alveolar cell-T (MAC-T) cell line

  • Xusheng, Dong;Chen, Liu;Jialin, Miao;Xueyan, Lin;Yun, Wang;Zhonghua, Wang;Qiuling, Hou
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.922-936
    • /
    • 2022
  • 5-Hydroxytryptamine (5-HT), a monoamine, as a local regulator in the mammary gland is a chemical signal produced by the mammary epithelium cell. In cows, studies have shown that 5-HT is associated with epithelial cell apoptosis during the degenerative phase of the mammary gland. However, studies in other tissues have shown that 5-HT can effectively promote cell viability. Whether 5-HT could have an effect on mammary cell viability in dairy cows is still unknown. The purpose of this study was to determine: (1) effect of 5-HT on the viability of bovine mammary epithelial cells and its related signaling pathways, (2) interaction between prolactin (PRL) and 5-HT on the cell viability. The bovine mammary alveolar cell-T (MAC-T) were cultured with different concentrations of 5-HT for 12, 24, 48 or 72 hours, and then were assayed using cell counting kit-8, polymerase chain reaction (PCR) and immunobloting. The results suggested that 20 μM 5-HT treatment for 12 or 24 h promote cell viability, which was mainly induced by the activation of 5-HT receptor (5-HTR) 1B and 4, because the increase caused by 5-HT vanished when 5-HTR 1B and 4 was blocked by SB224289 and SB204070. And protein expression of mammalian target of rapamycin (mTOR), eukaryotic translation elongation factor 2 (eEF2), janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were decreased after blocking 5-HT 1B and 4 receptors. When MAC-T cells were treated with 5-HT and PRL simultaneously for 24 h, both the cell viability and the level of mTOR protein were significantly higher than that cultured with 5-HT or PRL alone. In conclusion, our study suggested that 5-HT promotes the viability of MAC-T cells by 5-HTR 1B and/or 4. Furthermore, there is a reciprocal relationship between PRL and 5-HT.

Quality Improvement of Crude Glycerol from Biodiesel Production Using Activated Carbon Derived from Krabok (Irvingia malayana) Seed Shells

  • Wuttichai Roschat;Sarunya Donrussamee;Phatcharanan Smanmit;Samlit Jikjak;Tappagorn Leelatam;Sunti Phewphong;Krittiyanee Namwongsa;Preecha Moonsin;Vinich Promarak
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This research investigated the preparation of activated carbon derived from Krabok (Irvingia malayana) seed shells to improve the quality of crude glycerol obtained during biodiesel production. The activated carbon was prepared using a dry chemical activation method with NaOH, utilizing an innovative biomass incinerator. The results revealed that the resulting KC/AC-two-step exhibited favorable physicochemical adsorption properties, with a high surface area of 758.72 m2/g and an iodine number of 611.10 mg/g. These values meet the criteria of the industrial product standard for activated carbon No. TIS 900-2004, as specified by the Ministry of Industry in Thailand. Additionally, the adsorption efficiency for methylene blue reached an impressive 99.35 %. This developed activated carbon was then used to improve the quality of crude glycerol obtained from biodiesel production. The experimental results showed that the KC/AC-two-step increased the purity of crude glycerol to 73.61 %. In comparison, commercially available activated carbon (C/AC) resulted in a higher crude glycerol purity of 81.19 %, as analyzed by the GC technique. Additionally, the metal content (Zn, Cu, Fe, Pb, Cd, and Na) in purified glycerol using KC/AC-two-step was below the standards for heavy metals permitted in food and cosmeceuticals by the Food and Drug Administration of Thailand and the European Committee for Food Contact Materials and Articles. As a result, it can be inferred that Krabok seed shells have favorable properties for producing activated carbon suitable as an adsorbent to enhance crude glycerol purity. Furthermore, the improved crude glycerol from this research has potential for various industrial applications.

Correct Closure of the Left Atrial Appendage Reduces Stagnant Blood Flow and the Risk of Thrombus Formation: A Proof-of-Concept Experimental Study Using 4D Flow Magnetic Resonance Imaging

  • Min Jae Cha;Don-Gwan An;Minsoo Kang;Hyue Mee Kim;Sang-Wook Kim;Iksung Cho;Joonhwa Hong;Hyewon Choi;Jee-Hyun Cho;Seung Yong Shin;Simon Song
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.647-659
    • /
    • 2023
  • Objective: The study was conducted to investigate the effect of correct occlusion of the left atrial appendage (LAA) on intracardiac blood flow and thrombus formation in patients with atrial fibrillation (AF) using four-dimensional (4D) flow magnetic resonance imaging (MRI) and three-dimensional (3D)-printed phantoms. Materials and Methods: Three life-sized 3D-printed left atrium (LA) phantoms, including a pre-occlusion (i.e., before the occlusion procedure) model and correctly and incorrectly occluded post-procedural models, were constructed based on cardiac computed tomography images from an 86-year-old male with long-standing persistent AF. A custom-made closed-loop flow circuit was set up, and pulsatile simulated pulmonary venous flow was delivered by a pump. 4D flow MRI was performed using a 3T scanner, and the images were analyzed using MATLAB-based software (R2020b; Mathworks). Flow metrics associated with blood stasis and thrombogenicity, such as the volume of stasis defined by the velocity threshold ($\left|\vec{V}\right|$ < 3 cm/s), surface-and-time-averaged wall shear stress (WSS), and endothelial cell activation potential (ECAP), were analyzed and compared among the three LA phantom models. Results: Different spatial distributions, orientations, and magnitudes of LA flow were directly visualized within the three LA phantoms using 4D flow MRI. The time-averaged volume and its ratio to the corresponding entire volume of LA flow stasis were consistently reduced in the correctly occluded model (70.82 mL and 39.0%, respectively), followed by the incorrectly occluded (73.17 mL and 39.0%, respectively) and pre-occlusion (79.11 mL and 39.7%, respectively) models. The surfaceand-time-averaged WSS and ECAP were also lowest in the correctly occluded model (0.048 Pa and 4.004 Pa-1, respectively), followed by the incorrectly occluded (0.059 Pa and 4.792 Pa-1, respectively) and pre-occlusion (0.072 Pa and 5.861 Pa-1, respectively) models. Conclusion: These findings suggest that a correctly occluded LAA leads to the greatest reduction in LA flow stasis and thrombogenicity, presenting a tentative procedural goal to maximize clinical benefits in patients with AF.