• Title/Summary/Keyword: Chemical Accident

Search Result 513, Processing Time 0.027 seconds

A Study on the Development of a Health Risk Assessment Method for the Management of the Health Environment of Residents Living Around Areas Affected by Chemical Accidents (화학사고 주변 지역 거주자의 보건환경 관리를 위한 건강위해성 평가 방법 개발에 관한 연구)

  • Park, Sihyun;Park, Sejung;Park, Taehyun;Yoon, Danki;Jung, Jonghyeon;Gang, Sungkyu;Lee, Dongsoo;Seo, Youngrok;An, Yeonsoon;Lee, Cheolmin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.1-17
    • /
    • 2018
  • Objectives: This research is part of a study to be conducted over five years starting from 2017 by the Ministry of Environment on the development of technologies to evaluate the impact of chemical accidents on the human body. Methods: For this research, a five-stage specific study method was developed. Results: In brief, the developed health risk assessment method can be summarized as follows. First, a health risk assessment system was built based on the guidelines set forth by the USA NRC/NAS. Second, based on the disease manifestation theory, the health risk assessment method was divided into 1) a carcinogenic health risk assessment method focused on all carcinogens except non-genotoxic carcinogens and 2) a non-carcinogenic health risk assessment method focused on noncarcinogens including non-genotoxic carcinogens. Third, the detailed contents of the health risk assessment method were developed in four stages(hazard identification, dose-response assessment, exposure assessment, and risk determination) through theoretical consideration of the assessment of the level of health risk related to chemical exposure. Finally, a health risk assessment methodology, classified into stages to address acute, subacute/subchronic, and chronic conditions was developed after considering the physicochemical behavior of hazardous chemicals upon implementation of countermeasures after a chemical accident. Conclusions: A method to evaluate the health risks related to toxic chemicals generated by chemical accidents was developed. This study was performed with the purpose of developing a mathematical health risk assessment method to evaluate the health effects of exposure to hazardous chemicals upon implementation of emergency countermeasures after chemical accidents.

Cellular Automata Simulation System for Emergency Response to the Dispersion of Accidental Chemical Releases (사고로 인한 유해화학물질 누출확산의 대응을 위한 Cellular Automata기반의 시뮬레이션 시스템)

  • Shin, Insup Paul;Kim, Chang Won;Kwak, Dongho;Yoon, En Sup;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.136-143
    • /
    • 2018
  • Cellular automata have been applied to simulations in many fields such as astrophysics, social phenomena, fire spread, and evacuation. Using cellular automata, this study develops a model for consequence analysis of the dispersion of hazardous chemicals, which is required for risk assessments of and emergency responses for frequent chemical accidents. Unlike in cases of detailed plant safety design, real-time accident responses require fast and iterative calculations to reduce the uncertainty of the distribution of damage within the affected area. EPA ALOHA and KORA of National Institute of Chemical Safety have been popular choices for these analyses. However, this study proposes an initiative to supplement the model and code continuously and is different in its development of free software, specialized for small and medium enterprises. Compared to the full-scale computational fluid dynamics (CFD), which requires large amounts of computation time, the relative accuracy loss is compromised, and the convenience of the general user is improved. Using Python open-source libraries as well as meteorological information linkage, it is made possible to expand and update the functions continuously. Users can easily obtain the results by simply inputting the layout of the plant and the materials used. Accuracy is verified against full-scale CFD simulations, and it will be distributed as open source software, supporting GPU-accelerated computing for fast computation.

Development of response terms for contaminant transport in two-dimensional model for mixing analysis of toxic chemicals in rivers (하천에 유입된 유해화학물질의 혼합 해석을 위한 2차원 오염물질 이동모형 반응항 개발)

  • Shin, Dongbin;Shin, Jaehyun;Seo, Il Won
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.141-154
    • /
    • 2020
  • The accidents of toxic chemical spill into rivers are increasing in recent years due to expansion of heavy industries in Korea. In order to respond to the chemical spills, accident response systems have been established for both main rivers and tributary rivers. However, since these accident response system adopted the water quality models imported from the foreign countries, it is difficult to acquire the model parameters and to calibrate and validate the water quality models. Therefore, this study developed a depth-averaged two-dimensional river water quality model to analyze the behavior of hazardous chemicals in rivers and proposed an efficient simulation execution framework by identifying the significant reaction mechanisms considering the characteristics of the toxic chemicals. The depth-averaged two-dimensional river water quality model CTM-2D was upgraded by adding reaction terms representing mechanisms of the adsorption, desorption, and volatilization of toxic chemicals. In order to verify the model, the analytical solution was compared with the numerical solution, and results showed that the error was less than 0.1%. In addition, the model was applied to a virtual scenario which is a water pollution accident at the confluence of the Nakdong River - Kumho River, and model results showed that an efficient simulation could be carried out by activating only significant reactions which were assessed by the sensitivity analysis.

A Study on the Importance of Safety Measurement Based on the Analysis of the Factors Leading to Serious Accidents Related to Chemical Industries (화학 관련 산업의 중대 재해 원인분석을 통한 안전관리 중요성에 관한 연구)

  • An, Hyung Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • This study is an analysis of characteristics and the causes of serious accidents in chemical industry. The statistical analysis was focused on preventive facilities, equipment failures, accident materials and instabilities of workers and employment type. First, it showed that the highest number of the victims of accidents were involved in the industry of chemical materials and chemical products among the investigation of the manufactural industries. Also, particularly, they were investigated to be focused on the occurrence of the serious accidents in preventive facilities. Secondly, the most of the victims of serious accidents were found out not to be temporary or part-time worker but regular workers and most of the accidents occur in the form of big accidents involving more than 4 workers.

Impermeable Standards for the Concrete Bottom of Dikes for Crude Oil Storage Tanks (원유저장탱크 방류벽의 콘크리트 바닥재 불침투성 세부기준 연구)

  • Shin, Changhyun;Park, Jai Hak;Yoon, Junheon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • The bottom of dikes must be kept impermeable to control hazardous chemicals spilled from storage tanks. Currently, insufficient related chemical control laws lead to a possibility to spread through the bottom. Generally, due to the high cost of installation and periodical maintenance, many businesses prefer to install the bottom with general concrete. But, since the impermeability of concrete is dependent on the kind of materials and chemical reaction, all concrete cannot be considered as impermeable material. Thus, it is necessary to make the installation standards of the dike bottom clear in order to avoid the argument over the impermeability and prevent the chemical accident. This study has suggested the standards of impermeable concrete by conducting 7-day exposure test to crude oil with the pilot dikes. The results have showed that the standards have the better impermeable performance compared with the germany standard, which have been penetrated at the maximum penetration depth of 1.9 cm. This study is expected to contribute to both the risk reduction of penetrating into the bottom and the cost reduction of spending to make the bottom of dikes impermeable.

Leadership for the Global Process Safety in Chemical Process Industries: Challenges of chemical process industries in Asia (화학공정산업의 글로벌 공정 안전 리더십: 아시아 화학공정산업의 과제)

  • Yoon, En Sup;Shin, Dongil
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.337-338
    • /
    • 2017
  • 지난 60년간 일본, 한국, 중국은 물론이고 아시아에서의 공정 산업은 크게 성장했다. 그 발전과정에서 다양한 사고들을 겪고 극복해내는 과정이 있었으며, 최근 한국의 화학물질관리법을 포함하여 안전 기술 및 안전 관리에 많은 진전 또한 있었다. 이 발표의 서두에서는 한국의 공정산업의 역사적 발전에 대해 뒤돌아보며 당면 과제들에 대한 논의를 전개하고자 한다. 장기적인 경제발전의 일환으로 중화학공업 육성을 표방하며, 초기 단계에 정부주도의 적극적인 산업 발전 계획을 수립해 산업의 성장을 주도하였으며, 1990년대에는 어려움을 극복하기 위해 시장 중심의 구조 조정이 도입되었다. 지난 30년 동안 한국사회에서는 가스 폭발, 건물 붕괴, 화물 및 여객선의 사고를 비롯한 치명적인 사고들이 있었다. 이러한 사고 후에는 필연적으로 안전 정책 및 법률에 중요한 발전이 있었는데, 가장 최근의 것은 2012년 유독 가스 배출 사고 이후 화학물질관리법(Chemical Control Act)을 시행한 것이다. 또한 앞으로 20년간 (2036 년까지) 다양한 구성요소의 수준을 정량화할 수 있는 지속 가능성 개념에 대한 강한 요구가 있음은 주지의 사실이다. 지속 가능성의 새로운 패러다임은 에너지, 경제 및 환경의 전통적인 구성 요소로 구성된다. 더불어 지속 가능성은 안전, 보안 및 세계화(globalization)를 다루어야 한다. 미래의 지속 가능성 개념은 이러한 6가지 구성 요소 모두를 하나의 기능으로 정량적으로 통합할 것이다. 특히 이 작업에 대한 강력한 리더십은 화학 공정 산업에서 절대적으로 부족한 현실이기에, 이러한 기능의 통합과 특화된 교육 및 훈련에 대해 한국의 사례와 해외에서의 글로벌 응용 프로그램에 대란 논의를 통해 본 발표는 향후의 발전방향과 비전에 대해 논의하고자 한다.

  • PDF

Fate and Toxicity of Spilled Chemicals in Groundwater and Soil Environment III: organics (사고 누출 화학물질의 지하수 및 토양 환경 내 거동 및 환경 독성 특성 III: 유기화학물질을 중심으로)

  • Jeong, Seulki;Moon, Hee Sun;Shin, Doyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This study presents a technical perspective to the fate characteristics of phenol and m-cresol, which represent some of the most common organic chemicals found in chemical spill accidents, and likely to persist in soil and groundwater due to their highly stable physicochemical properties. Some cases of domestic and foreign chemical accidents linked to phenol and m-cresol contamination were compiled. Due to their low organic carbon-water partitioning coefficient (Koc), phenol and m-cresol tend to migrate into groundwater and remained as dissolved phase. On the other hands, phenol and m-cresol can be readily decomposed by microbes in soil and groundwater under appropriate conditions. Therefore, the fate characteristics of these chemicals are highly contingent on environmental conditions. Thus, if a great quantity of leakage is occurred by chemical accidents, the up-to-date and correct information about fate characteristics taking into account both the chemical and environmental conditions is greatly needed to minimized the potential hazards from these chemicals.

Chemical Accidents Response Information System(CARIS) for the Response of Atmospheric Dispersion Accidents in association with Hazardous Chemicals (유해화학물질 관련 대기오염사고 대응을 위한 화학물질사고대응정보시스템 (CARIS))

  • Kim, Cheol-Hee;Park, C.J.;Park, J.H.;Im, C.S.;Kim, M.S.;Park, C.H.;Chun, K.S.;Na, J.G.
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2003
  • The emergency response modeling system CARIS has been developed at CCSM (Center for Chemical Safety Management), NIER (National Institute of Environmental Research) to track and predict dispersion of hazardous chemicals for the environmental decision support in case of accidents at chemical or petroleum companies in Korea. The main objective of CARIS is to support making decision by rapidly providing the key information on the efficient emergency response of hazardous chemical accidents for effective approaches to risk management. In particular, the integrated modeling system in CARIS consisting of a real-time numerical weather forecasting model and air pollution dispersion model is supplemented for the diffusion forecasts of hazardous chemicals, covering a wide range of scales and applications for atmospheric information. In this paper, we introduced the overview of components of CARIS and described the operational modeling system and its configurations of coupling/integration in CARIS. Some examples of the operational modeling system is presented and discussed for the real-time risk assessments of hazardous chemicals.

A Regional Safety Campaign to Prevent Chemical Accidents in the Workplace (화학사고 예방을 위한 사업장 화학안전캠페인 활동 사례)

  • Jihoon Park;Seon-Oh Park;Hyojin Park;Hye-Ok Kwon
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.5
    • /
    • pp.247-250
    • /
    • 2023
  • This case report aims to introduce the safety campaign activities for preventing chemical accidents that were cooperatively conducted by an environmental office and chemical-handling workplaces located in the Ulsan area. A chemical safety campaign was initiated to examine and manage chemical-handling facilities at high risk for chemical accidents, specifically valves, flanges, and switches (VFS) from October 2020 to December 2022. The VFS safety check campaign was conducted to raise workers' safety consciousness based on a campaign of advertisements in the workplace from October 2020 to December 2021. In addition, a VFS plus [+] campaign was initiated to encourage actual management activities for chemical-handling facilities at high risk of chemical accidents in 2022. A total of 49 corporations participated in the VFS plus [+] campaign. In contrast to the VFS safety check campaign, which simply focused on publicity and resulted in changes in worker awareness, practicable safety management activities focusing on the handling facilities were carried out. Although notable short-term impacts have yet to be discerned from the campaigns, it is expected that they will eventually serve as a starting point for developing a proper safety culture and environment.

A Quantitative Risk Analysis of LPG Leaked During Cylinder Delivery (가스용기 운반 중 누출된 LPG의 정량적 위험 분석)

  • Kim B-J,;Park Ki-Chang;Lee Kuen-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.33-41
    • /
    • 2003
  • There exists high hazard when transporting LPG as well as using, storing, and producing. For small scale LPG consumer, retailers deliver LPG to customers via a truck loading many LPG cylinders. Suppose there occurred a accident during LPG cylinder transfer, this could result in serious damages to the life and properties in the near or neighbor of the accident spot. In this regard, we made a quantitative risk analysis to estimate the possible damages and the probability through the identification of accidents causes and the simulation of the possible scenario. In this study, we made the Excel & Visual Basic computer program to perform quantitative LPG accident analysis. The simulation showed the following results. In case of UVCE(Unconfined Vapor Cloud Explosion), the effect within l0m of the accident spot showed very severe structural damages and even the accident can break the window glasses of the area of 150 m apart from accident spot. In case of TNT corresponding probit analysis, after 10 minutes LPG leaking, $75\%$ window glasses of 40 m distance was expected to be broken. And $16\%$ frames of 20m distance, $10\%$ frames of 40m distance was expected to be collapsed.

  • PDF