• Title/Summary/Keyword: Chemical/Mechanical degradation

검색결과 214건 처리시간 0.029초

PZT-CMP 공정시 후처리 공정에 따른 표면 특성 (Surface Characteristics of PZT-CMP by Post-CMP Process)

  • 전영길;이우선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.103-104
    • /
    • 2006
  • $Pb(Zr,Ti)O_3(PZT)$ is very attractive ferroelectric materials for ferroelectric random access memory (FeRAM) applications because of its high polarization ability and low process temperature. However, Chemical Mechanical Polishing (CMP) pressure and velocity must be carefully adjusted because FeRAM shrinks to high density devices. The contaminations such as slurry residues due to the absence of the exclusive cleaning chemicals are enough to influence on the degradation of PZT thin film capacitors. The surface characteristics of PZT thin film were investigated by the change of process parameters and the cleaning process. Both the low CMP pressure and the cleaning process must be employed, even if the removal rate and the yield were decreased, to reduce the fatigue of PZT thin film capacitors fabricated by damascene process. Like this, fatigue characteristics were partially controlled by the regulation of the CMP process parameters in PZT damascene process. And the exclusive cleaning chemicals for PZT thin films were developed in this work.

  • PDF

A Numerical Study on Flow-Accelerated Corrosion in Two Adjacent Elbows

  • Yun, Hun;Hwang, Kyeongmo;Moon, Seung-Jae
    • Corrosion Science and Technology
    • /
    • 제15권1호
    • /
    • pp.6-12
    • /
    • 2016
  • Flow-Accelerated Corrosion (FAC) is a well-known degradation mechanism that attacks the secondary piping in nuclear power plants. Since the Surry Unit 2 event in 1986, most nuclear power plants have implemented management programs to deal with damages in carbon and low-alloy steel piping. Despite the utmost efforts, damage induced by FAC still occurs in power plants around the world. In order to predict FAC wear, some computer programs were developed such as CHECWORKS, CICERO, and COMSY. Various data need to be input to these programs; the chemical composition of secondary piping, flow operating conditions and piping geometries. CHECWORKS, developed by the Electric Power Research Institute (EPRI), uses a geometry code to calculate geometry effects. Such a relatively simple geometry code is limited in acquiring the accuracy of FAC prediction. Recently, EPRI revisited the geometry code with the intention of updating it. In this study, numerical simulations were performed for two adjacent $90^{\circ}$ elbows and the results were analysed in terms of the proximity effect between the two adjacent elbows.

PEG 접합: 단백질 및 펩타이드 치료제의 약효를 증가시키는 새로운 기술 (PEGYLATION: Novel Technology to Enhance Therapeutic Efficacy of Proteins and Peptides)

  • 박명옥;이강춘
    • Journal of Pharmaceutical Investigation
    • /
    • 제30권2호
    • /
    • pp.73-83
    • /
    • 2000
  • Polyethylene glycol (PEG) is a water soluble, biocompatible, non-toxic polymer and PEGylation is a well established technique for the modification of therapeutic proteins and peptides. PEG-protein drugs have been extensively studies in relation to therapies for various diseases: cancer, inflammation and others. The covalent attachment of PEG to proteins and peptides prolonged plasma half-life, reduced antigenicity and immunogenicity, increased thermal and mechanical stability, and prevented degradation by enzymes. Several chemical groups for general and site specific conjugation have been exploited to activate PEG for amino group, carboxyl group, and cysteine groups. PEGylation of many proteins and peptides have been studied to enhance their properties for the potential uses. Also, the different positional isomers in several PEG-proteins have shown the difference in vivo stability and biological indicating that the site of PEG molecule attachment is one of the important factor to develop PEG-proteins as potential therapeutic agents.

  • PDF

목질계 Biomass의 변환이용(제1보)-기계펄프로부터 용해용펄프의 제조- (Conversion of Woody Biomass for Utilization( I )-The Preparation of Dissolving Pulp from Mechanical Pulp-)

  • 양재경;임부국;이종윤
    • 펄프종이기술
    • /
    • 제29권3호
    • /
    • pp.51-59
    • /
    • 1997
  • Dissolving pulp is a low yield(30∼35%) bleached chemical pulp that has a high cellulose content (95% or higher) suitable for use in cellulose derivatives such as rayon, cellulose acetate. This research was studied for dissolving pulp preparation as the raw material of viscose rayon from commertial pulps. (TMP, CP, DIP) In the change of pulp(cellulose) characteristics after sodium hypochlorite and solvolysis treatment. the following results were obtained In the case of sodium hypochlorite pretreatment, we have obtained pulp that high purity cellulose, but degree of polymerization was inclined to decrease less than 170∼240. Comparing sodium hypochlorite pretreatment and solvolysis pretreatment, solvolysis pretreatment is superior to sodium hypochlorite process for making dissolving pulp. We think that the low degree of polymerization of cellulose because of increasing degradation of cellulose during delignification treatment.

  • PDF

Coupled chemical and mechanical processes in concrete structures with respect to aging

  • Cramer, Friedhelm;Kowalsky, Ursula;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • 제3권1호
    • /
    • pp.53-71
    • /
    • 2014
  • Accurate prognoses of the durability of concrete structures require a detailed description of the continuously running aging processes and a consideration of the complete load history. Therefore, in the framework of continuous porous media mechanics a model is developed, which allows a detailed analysis of the most important aging processes of concrete as well as a flexible coupling of different processes. An overview of the prediction model and the balance equations is given. The material dependent model equations, the consequences of coupling different processes and the solution scheme are discussed. In two case studies the aging of concrete due to hydration and chloride penetration are presented, which illustrate the capabilities and the characteristics of the developed model.

A Study on Dispersion Behaviors of Fume Particles in Laser Cutting Process of Optical Plastic Thin Films

  • Kim, Kyoungjin
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.62-68
    • /
    • 2019
  • The optoelectronic display units such as TFT-LCD or OLED require many thin optical plastic films and their mass manufacturing processes employ CO2 laser cutting of those thin films in a large quantity. However, laser film cutting could generate fume particles through melt shearing, vaporization, and chemical degradation and those particles could be of great concern for film surface contamination. In order to appreciate the fume particle dispersion behaviors in laser film cutting, this study relies on random particle simulations by probabilistic distributions of particle size, ejection velocity and angles coupled with Basset-Boussinesq-Oseen model of particle trajectory in low Reynolds number flows. Here, up to one million particles of random sampling have been tested to effectively show fume particles dispersed on the film surface. The computational results could show that particular range of fume particle size could easily disperse into the pixel region of processed optical films.

Kinetic Data for Texture Changes of Foods During Thermal Processing

  • Lee, Seung Hwan
    • 산업식품공학
    • /
    • 제21권4호
    • /
    • pp.303-311
    • /
    • 2017
  • To automate cooking processes, quantitative descriptions are needed on how quality parameters, such as texture change during heating. Understanding mechanical property changes in foods during thermal treatment due to changes in chemical composition or physical structure is important in the context of engineering models and in precise control of quality in general. Texture degradation of food materials has been studied widely and softening kinetic parameters have been reported in many studies. For a better understanding of kinetic parameters, applied kinetic models were investigated, then rate constants at $100^{\circ}C$ and activation energy from previous kinetic studies were compared. The food materials are hardly classified into similar softening kinetics. The range of parameters is wide regardless of food types due to the complexity of food material, different testing methods, sample size, and geometry. Kinetic parameters are essential for optimal process design. For broad and reliable applications, kinetic parameters should be generated by a more consistent manner so that those of foods could be compared or grouped.

Desmear 습식 표면 전처리가 무전해 도금된 Cu 박막과 FR-4 기판 사이의 계면 접착 기구에 미치는 영향 (Effect of Desmear Treatment on the Interfacial Bonding Mechanism of Electroless-Plated Cu film on FR-4 Substrate)

  • 민경진;박영배
    • 한국재료학회지
    • /
    • 제19권11호
    • /
    • pp.625-630
    • /
    • 2009
  • Embedding of active devices in a printed circuit board has increasingly been adopted as a future electronic technology due to its promotion of high density, high speed and high performance. One responsible technology is to embedded active device into a dielectric substrate with a build-up process, for example a chipin-substrate (CiS) structure. In this study, desmear treatment was performed before Cu metallization on an FR-4 surface in order to improve interfacial adhesion between electroless-plated Cu and FR-4 substrate in Cu via structures in CiS systems. Surface analyses using atomic force microscopy and x-ray photoemission spectroscopy were systematically performed to understand the fundamental adhesion mechanism; results were correlated with peel strength measured by a 90o peel test. Interfacial bonding mechanism between electrolessplated Cu and FR-4 substrate seems to be dominated by a chemical bonding effect resulting from the selective activation of chemical bonding between carbon and oxygen through a rearrangement of C-C bonding rather than from a mechanical interlocking effect. In fact, desmear wet treatment could result in extensive degradation of FR-4 cohesive strength when compared to dry surface-treated Cu/FR-4 structures.

Sol-gel Mechanism of Self-patternable PZT Film Starting from Alkoxides Precursors

  • Hwang, Jae-Seob;Kim, Woo-Sik;Park, Hyung-Ho;Kim, Tae-Song
    • 한국세라믹학회지
    • /
    • 제40권4호
    • /
    • pp.385-392
    • /
    • 2003
  • Sol-gel preparation technique using a chemical reaction of metal alkoxides has been widely used for the fabrication of various materials including ceramics. However, its mechanism has been studied till now because a number of chemical ways are possible from various alkoxides and additives. In this study, the mechanism of hydrolysis, condensation, and polymerization of alkoxides were investigated from the fabrication of lead-zirconate-titanate (PbZr$\_$x/Ti$\_$l-x/O$_3$; PZT) thin film that is used as various micro-actuator, transducer, and sensor because of its high electro-mechanical coupling factors and thermal stability. Furthermore, the fabrication process and characteristics of self-patternable PZT film using photosensitive stabilizer were studied in order to resolve the problem of physical damage and properties degradation during dry etching for device fabrication. Using an optimum condition to prepare the self-patternable PZT film, more than 5000 ${\AA}$ thick self-patternable PZT film could be fabricated by three times coating. The PZT film showed 28.4 ${\mu}$c/cm$^2$ of remnant polarization (Pr) and 37.0 kV/cm of coercive field (E$\_$c/).

Cu 용 슬러리 환경에서의 보호성 코팅이 융착 CMP 패드 컨니셔너에 미치는 영향 (Effect on protective coating of vacuum brazed CMP pad conditioner using in Cu-slurry)

  • 송민석;지원호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.434-437
    • /
    • 2005
  • Chemical Mechanical Polishing (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. In general, CMP is a surface planarization method in which a silicon wafer is rotated against a polishing pad in the presence of slurry under pressure. The polishing pad, generally a polyurethane-based material, consists of polymeric foam cell walls, which aid in removal of the reaction products at the wafer interface. It has been found that the material removal rate of any polishing pad decreases due to the so-called 'pad glazing' after several wafer lots have been processed. Therefore, the pad restoration and conditioning has become essential in CMP processes to keep the urethane polishing pad at the proper friction coefficient and to allow effective slurry transport to the wafer surface. Diamond pad conditioner employs a single layer of brazed bonded diamond crystals. Due to the corrosive nature of the polishing slurry required in low pH metal CMP such as copper, it is essential to minimize the possibility of chemical interaction between very low pH slurry (pH <2) and the bond alloy. In this paper, we report an exceptional protective coated conditioner for in-situ pad conditioning in low pH Cu CMP process. The protective Cr-coated conditioner has been tested in slurry with pH levels as low as 1.5 without bond degradation.

  • PDF