• 제목/요약/키워드: Cheese Whey Protein

검색결과 48건 처리시간 0.033초

Effects of Carboxymethyl Chitosan on Yield and Whey Protein Loss in Cottage Cheese

  • Kim, Kyung-Tae;Kang, Ok-Ju
    • Preventive Nutrition and Food Science
    • /
    • 제10권3호
    • /
    • pp.231-238
    • /
    • 2005
  • A standard $1\%$ w/v solution of CM-chitosan made from squid pen was added to milk at levels of $0.5\sim3\%$ (v/v) to improve the yield and rheological properties of cottage cheese by whey protein retention. Cheese curd did not form at levels higher than $3\%$ (v/v) CM-chitosan standard solution. Yield and total protein of cottage cheese increased up to $2\%\;by\;11\;to\;42\%\;and\;17\;to\;38\%$ respectively, compared to control cheese. Whey protein losses were decreased by 11 to $42\%$ and thus accounted for all of the increase in yield. Anomalous results were obtained at the $0.8\%$ level, which neither improved yield or whey protein retention nor stabilized rheological parameters, and at the $0.5\%$ level, which improved yield and total protein without increasing whey protein retention. Elasticity and cohesiveness of CM-chitosan-containing cheese were generally improved and stabilized during storage. Monitoring of cheese chromaticity values for four weeks revealed a delay in the onset of yellowing in cheeses with CM-chitosan compared to the controls, while the concentration of added CM-chitosan had little influence on cheese chromaticity. The addition of CM-chitosan solution could be applied directly to industrial scale cottage cheese-making without the need for any modification of the production process.

Effects of Genetic Variants of ${\kappa}$-casein and ${\beta}$-lactoglobulin and Heat Treatment of Milk on Cheese and Whey Compositions

  • Choi, J.W.;Ng-Kwai-Hang, K.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권5호
    • /
    • pp.732-739
    • /
    • 2002
  • Milk samples with different phenotype combination of $\{kappa}$-casein and ${\beta}$-lactoglobulin and different preheating temperatures of 30, 70, 75 and $80^{\circ}C$ were used for cheesemaking under laboratory conditions. For the 853 batches of cheese, mean composition was 59.64% total solids, 30.24% fat and 23.66% protein, and the whey contained 6.93% total solids, 0.30% fat and 0.87% protein. Least squares analysis of the data indicated that heating temperature of the milk and ${\kappa}$-CN/${\beta}$-LG phenotypes had significant effects on cheese and whey compositions. The total solids, fat and protein contents of cheese were negatively correlated with preheating temperatures of milk. Cheese from BB/BB phenotype milk had the highest and those from AA/AA phenotype milk had the lowest concentrations of total solids, fat and protein. Mean recoveries of milk components in the cheese were 53.71% of total solids, 87.15% of fat, and 80.32% of protein. For the 10 different types of milk, maximum recoveries of milk components in cheese occurred with preheating temperature of $70^{\circ}C$ or $75^{\circ}C$ and lowest recoveries occurred at $80^{\circ}C$. The whey averaged 6.94% total solids, 0.30% fat and 0.87% protein. Losses of milk components in the whey were lowest for milk preheated at $80^{\circ}C$ and for milk containing the BB/BB phenotype.

Chitosan/whey Protein (CWP) Edible Films Efficiency for Controlling Mould Growth and on Microbiological, Chemical and Sensory Properties During Storage of Göbek Kashar Cheese

  • Yangilar, Filiz
    • 한국축산식품학회지
    • /
    • 제35권2호
    • /
    • pp.216-224
    • /
    • 2015
  • The objective of present study was to evaluate the effects of the application of chitosan and chitosan/whey protein on the chemical, microbial and organoleptic properties of Göbek Kashar cheese during ripening time (on 3rd, 30th, 60th and 90th d). Difference in microbiological and chemical changes between samples was found to be significant (p<0.05) during ripening period. Cheese samples with edible coating had statistically lower mould counts compared to the uncoated samples. Furthermore the highest and lowest mould counts were determined in control (4.20 Log CFU/g) and other samples (<1 Log CFU/g) at 60th and 90th d of storage. All samples exhibited higher levels of water soluble nitrogen and ripening index at the end of storage process. At the end of 90 day storage period, no signicant dierences in salt and fat values were observed among the cheeses studied. The edible coatings had a beneficial effect on the sensory quality of cheese samples. In the result of sensory analysis, while cheese C and the chitosan coated cheese samples were more preferred by the panellists, the chitosan/whey protein film-coated cheese samples received the lowest scores. This study shows coating suggests could be used to improve the quality of cheese during ripening time.

다양한 유청제품인 WP, WPC 34, WPC 80, DWP, LP를 Soymilk에 첨가하여 제조된 Mozzarella Cheese Analogue의 저장 중 품질 변화에 관한 연구 (Quality of Mozzarella Cheese Analogues Prepared from Soy Milk with WP, WPC 34, WPC 80, DWP, or LP during the Storage Period)

  • 진우승;송광영;서건호;윤여창
    • Journal of Dairy Science and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.35-49
    • /
    • 2013
  • The purpose of this study was to develop Mozzarella cheese analogues by using dairy products in the form of WPC 34, WPC 80, whey protein, demineralized whey powder, and lactose powder along with soy milk. Soy milk was separately blended with 5% WPC 34 (A), WPC 80 (B), DWP (C), WP (D), and LP (E) and also with 10% WPC 34 (F), WPC 80 (G), DWP (H), WP (I), and LP (J). Blending of soy milk and whey products showed that increase in the proportions of whey products (WPC 34, WPC 80, DWP, WP, and LP) led to increase in the protein, lactose, and SNF levels of the admixture. A decrease in fat content was observed for all cheeses prepared from mixtures, relative to those for the control cheese. The nitrogen content within analogue samples was higher than that in the control cheese and increased with increase in the proportions of whey products within soy milk. Higher water soluble nitrogen levels were observed in cheese prepared from whey-product-blended soy milk than in the control cheese. The non-protein nitrogen level within the control Mozzarella cheese was significantly lower than that in the Mozzarella analogues, and, in the case of cheese analogues, it increased with increase in the proportion of whey products in soy milk. With regard to the physicochemical and sensory qualities of the Mozzarella cheese analogues and control cheese, the pH of all analogue samples, with the exception of the cheese prepared from group G, was lower than that of the control Mozzarella cheese. Rheological studies showed that the hardness of Mozzarella cheese analogues was lower than that of the control Mozzarella, while the elasticity, cohesiveness, and brittleness of the analogues was higher. The control sample had a higher meltability level than any of the Mozzarella analogues. Mozzarella cheese prepared with the traditional method had higher browning and stretching levels than all the cheese analogues, but a lower oiling-off level.

  • PDF

페수로부터 연속한외여과법에 의한 단밸질의 분리, 회수에 관한 연구 -II. 폐수 시액의 물성과 삼투압, 경막물질 이동계수 및 겔농도와의 관계- (A Study on Recovery of Protein Concentrated from Cheese Whey Solution by the Continuous Ultrafiltration -II. Relationship among the osmotic pressure, the coefficient of mass transfer, gel concentration of waste cheese whey-)

  • 공재열
    • 한국식품영양과학회지
    • /
    • 제17권4호
    • /
    • pp.371-375
    • /
    • 1988
  • $32^{\circ}C$에서 분획분자량 100,000인 막을 사용하여 Cheese whey를 농축시켰을 때 그 농축한계는 38%로 이는 보통의 폐액중의 whey농도의 약 6배의 농도에 해당한다. 겔층의 형성은 농축효과를 저하시킬 뿐만 아니라 저분자용질과 고분자용질과의 분리도 나쁘게 한다. 한외여과가 고분자 용질의 분리를 대상으로 하는 이상 겔층의 형성은 피할 수 없으므로 운전시간의 합리적인 관리가 필요하다고 생각된다. 투과유속이 큰 한외여과인 경우, 경막물질이동계수는 온도 $32^{\circ}C$에서 관내선속도의 1.1승에 비례하는 결과를 얻었으며 종래의 보고치에 비하여 관내선속도의 영향이 큰 것으로 나타났다.

  • PDF

Separation of Calcium-binding Protein Derived from Enzymatic Hydrolysates of Cheese Whey Protein

  • Kim, S.B.;Shin, H.S.;Lim, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권5호
    • /
    • pp.712-718
    • /
    • 2004
  • This study was carried out to separate the calcium-binding protein derived from enzymatic hydrolysates of cheese whey protein. CWPs (cheese whey protein) heated for 10 min at $100^{\circ}C$ were hydrolyzed by trypsin, papain W-40, protease S, neutrase 1.5 and pepsin, and then properties of hydrolysates, separation of calcium-binding protein and analysis of calcium-binding ability were investigated. The DH (degree of hydrolysis) and NPN (non protein nitrogen) of heated-CWP hydrolysates by commercial enzymes were higher in trypsin than those of other commercial enzymes. In the result of SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis), $\beta$-LG and $\alpha$-LA in trypsin hydrolysates were almost eliminated and the molecular weight of peptides derived from trypsin hydrolysates were smaller than 7 kDa. In the RP-HPLC (reverse phase HPLC) analysis, $\alpha$-LA was mostly eliminated, but $\beta$-LG was not affected by heat treatment and the RP-HPLC patterns of trypsin hydrolysates were similar to those of SDS-PAGE. In ion exchange chromatography, trypsin hydrolysates were shown to peak from 0.25 M NaCl and 0.5 M NaCl, and calcium-binding ability is associated with the large peak, which was eluted at a 0.25 M NaCl gradient concentration. Based on the results of this experiment, heated-CWP hydrolysates by trypsin were shown to have calcium-binding ability.

Calcium-binding Peptides Derived from Tryptic Hydrolysates of Cheese Whey Protein

  • Kim, S.B.;Lim, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권10호
    • /
    • pp.1459-1464
    • /
    • 2004
  • The purpose of this research was to investigate the potential use of cheese whey protein (CWP), a cheese by-product. The physiological activity of calcium-binding peptides in CWP may be used as a food additive that prevents bone disorders. This research also examined the characteristics of calcium-binding peptides. After the CWP was heat treated, it was hydrolyzed by trypsin. Then calcium-binding peptides were separated and purified by ion-exchange chromatography and reverse phase HPLC, respectively. To examine the characteristics of the purified calcium-binding peptides, amino acid composition and amino acid sequence were analyzed. Calcium-binding peptides with a small molecular weight of about 1.4 to 3.4 kDa were identified in the fraction that was flowed out from 0.25 M NaCl step gradient by ion-exchange chromatography of tryptic hydrolysates. The results of the amino acid analysis revealed that glutamic acid in a calcium-binding site took up most part of the amino acids including a quantity of proline, leucine and lysine. The amino acid sequence of calcium-binding peptides showed Phe-Leu-Asp-Asp-Asp-Leu-Thr-Asp and Ile-Leu-Asp-Lys from $\alpha$-LA and Ile-Pro-Ala-Val-Phe-Lys and Val-Tyr-Val-Glu-Glu-Leu-Lys from ${\beta}$-LG.

CHEMICAL AND MICROBIOLOGICAL ANALYSIS OF GOAT MILK, CHEESE AND WHEY BY NIRS

  • Perez Marin, M.D.;Garrido Varo, A.;Serradilla, J.M.;Nunez, N.;Ares, J.L.;Sanchez, J.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1513-1513
    • /
    • 2001
  • Present Food Legislation compels dairy industry to carry out analyses in order to guarantee the food safety and quality of products. Furthermore, in many cases industry pays milk according to bacteriological or/and nutritional quality. In order to do these analyses, several expensive instruments are needed (Milkoscan, Fossomatic, Bactoscan). NIRS technology Provides a unique instrument to deal with all analytical requirements. It offers as main advantages its speed and, specially, its versatility, since not only allows determine all the parameters required in milk analysis, but also allows analyse other dairy products, like cheese or whey. The objective of this study is to develop NIRS calibration equations to predict several quality parameters in goat milk, cheese and whey. Three sets of 123 milk samples, 190 cheese samples and 109 whey samples, have been analysed in a FOSS NIR Systems 6500 I spectrophotometer equipped with a spinning module. Milk and whey were analysed by folded transmission, using circular cells with gold surface and pathlength of 0.1 m, while intact cheese was analysed by reflectance using standard circular cells. NIRS calibrations were obtained for the prediction of chemical composition in goat milk, for fat (r$^2$=0.92; SECV=0.20%), total solids (r$^2$=0.95: SECV=0.22%), protein (r$^2$=0.94; SECV=0.07%), casein (r$^2$=0.93; SECV=0.07%) and lactose (r$^2$=0.89; SECV=0.05%). Moreover, equations have been performed to determine somatic cells (r$^2$=0.81; SECV=276.89%) and total bacteria (r$^2$=0.58; SECV=499.32%) counts in goat milk. In the case of cheese, calibrations were obtained for the prediction of fat (r$^2$=0.92; SECV=0.57), total solids (r$^2$=0.80; SECV=0.92%) and protein (r$^2$=0.70; SECV=0.63%). In whey, fat (r$^2$=0.66; SECV=0.08%), total solids (r$^2$=0.67; SECV=0.19%) and protein (r$^2$=0.76; SECV=0.07%) NIRS equations were obtained. These results proved the viability of NIRS technology to predict chemical and microbiological parameters and somatic cells count in goat milk, as well as chemical composition of goat cheese and whey.

  • PDF

발효유제품의 유단백질 기능성 연구 동향 (Functional Properties of Milk Protein in Fermented Milk Products)

  • 이원재
    • Journal of Dairy Science and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.29-32
    • /
    • 2007
  • An understanding functional properties and molecular interactions of milk proteins was critical to improve qualities of fermented dairy products including yogurts and cheeses. Extensive rearrangements of casein particles were important factors to enhance whey separation in yogurt gel network. The use of high hydrostatic pressure treated whey protein as an ingredient of low fat processed cheese food resulted in the production of low fat processed cheese food with acceptable firmness and enhanced meltabilities. Milk protein-based nano particles produced by self-association of proteins could be better nutrient delivery vehicle than micro particle since particle size reduction in nano particles could lead to increased residence time and surface area available in GI tract.

  • PDF

임실지역 젖소 초유로부터 분리한 TGF-β 함유 유청 단백질의 면역활성 (Immunological Activity of Bovine Colostral Whey Protein Containing TGF-β from Imsil Province)

  • 양희선;오현희;최희영;박종혁;김경희;오전희;정후길
    • 한국축산식품학회지
    • /
    • 제32권3호
    • /
    • pp.339-345
    • /
    • 2012
  • 분만 후 3일 이내에 분비되는 임실 지역의 젖소 초유에서 유청 단백질을 효율적으로 분리하고 RAW 264.7 세포의 증식 및 면역활성에 미치는 영향을 조사하였다. 실험에 사용한 초유의 유청 단백질 g당 TGF-${\beta}1$은 875 pg/mL,TGF-${\beta}2$는 6,600 pg/mL이었으며 실험에 사용한 초유 유청 단백질 내 총 TGF-${\beta}$의 양은 7,475 pg/mL이었다. RAW264.7 세포에 대한 초유 유청 단백질 첨가에 따른 세포증식 정도를 알아본 결과 10 mg/mL의 농도까지는 세포성장을 유도하였으나 20 mg/mL 이상의 농도에서는 세포성장을 억제하였다. 이에 RAW 264.7 세포에서의 초유 유청 단백질의 면역관련 실험에 사용할 농도는 최대 10 mg/mL까지로 결정하였다. RAW 264.7 세포에 초유 유청 단백질(0-10 mg/mL)과 LPS(1 ${\mu}g/mL$)를 차례로 반응시키고 NO생성량을 측정한 결과 초유 유청 단백질이 농도 의존적으로 NO의 생성을 억제하였다. 또한 LPS 자극에 의한 염증성 사이토카인(TNF-${\alpha}$, IL-$1{\beta}$, IL-6)이 생성되는 과정에서 초유 유청 단백질의 효과를 확인하였다. 그 결과, LPS를 단독으로 첨가했을 때 TNF-${\alpha}$, IL-$1{\beta}$, IL-6의 농도가 모두 증가하였으나 초유 유청 단백질을 첨가한 경우에는 염증성 사이토카인의 생성이 농도 의존적으로 감소하는 경향을 보였다. 초유 유청 단백질에 의해 NO를 비롯한 염증성 사이토카인의 생성이 억제되는 것이 heme oxygenase-1의 발현과 관련하는지 알아보고자 초유 유청 단백질을 농도별(0-10 mg/mL)로 처리하여 heme oxygenase-1의 발현여부를 측정한 결과 대조군과 비교하여 3-4배 이상의 발현 증가를 보였다. 이상의 결과들로 미루어보아 LPS로 자극된 RAW 264.7 세포에서 TGF-${\beta}$ 등을 함유한 초유 유청 단백질은 10 mg/mL 이하의 농도에서 농도 의존적으로heme oxygenase-1의 발현을 유도하여 염증성 사이토카인인 TNF-${\alpha}$, IL-$1{\beta}$, IL-6 및 NO의 생성을 억제하는 것으로 판단되었다.