• Title/Summary/Keyword: Check-Valve

Search Result 211, Processing Time 0.023 seconds

On the Pressurization Characteristics of Small Piezoelectric Hydraulic Pump for Brake System (브레이크용 소형 압전유압펌프 가압 동특성 해석)

  • Jeong, Min-Ji;Hwang, Jai-Hyuk;Bae, Jae-Sung;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.963-970
    • /
    • 2015
  • In this study, the pressurization characteristics of the small piezoelectric hydraulic pump for a brake system has been analyzed through modeling the full hydraulic pump components; the pump chamber, check valve, pump load, pump drive controller etc. To analyze the pressurization characteristics, the process of charging pressure in the chamber with stacked-layer piezoelectric actuator were firstly modeled. Secondly, the flow coefficient of the check valve in terms of valve opening has been calculated after computational fluid dynamics analysis, such as the pressure distribution around check valve and the flow rate, was conducted. Also the pump driving controller, which controls the input voltage to the actuator, was designed to make the load pressure follow the input pressure command. The simulation results find that it takes about 0.03ms to reach the operating load pressure required for the braking system. The simulation result was also verified through comparison to the result of the pump performance test.

Study on Loss Reduction for Tilting Disk Check Valve Installed in Piping System (배관용 틸팅디스크 체크밸브의 손실저항 절감에 관한 연구)

  • Kim, J.H.;Park, J.H.;Lee, H.S.;Nam, S.H.;Hwang, S.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.327-328
    • /
    • 2006
  • In generally, under the influence of over-pressure drop, serious problems such as cavitation, choked flow, flashing and vibration has been coming around the tilting disk check valve. A PIV experiment to examine the cause of energy loss has been performed and the improvement configuration of valve seat based on this visualization results is proposed. In the visualization results, flows in the piping system became instability under the influence of the shape of boss. This unstable flows induces sudden pressure drop in the piping system. So, we change the configuration of boss as a streamlined design to be stabilized the flows. A pressure measurement has been performed to know that the influence of the configuration change. In result, the rate of pressure loss reduction is about 22% at the position of No. 2 and 24.2% at the position of No. 6 in comparison with pre-improved shape.

  • PDF

A PIV Study on Loss Reduction for Tilting Disk Check Valve Installed in Piping System of Water Supply by PIV (PIV에 의한 상수도 배관용 틸팅디스크 체크 밸브의 손실저감에 관한 연구)

  • Kim, B.S.;Kim, J.H.;Lee, J.Y.;Kim, J.G.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.577-582
    • /
    • 2003
  • In generally, under the influence of over-pressure drop, serious problems such as cavitation, choked flow, flashing and vibration has been coming around the tilting disk check valve. A PIV experiment to examine the cause of energy loss has been performed and the improvement configuration of valve seat based on this visualization results is proposed. In the visualization results, flows in the piping system became instability under the influence of the shape of boss. This unstable flows induces sudden pressure drop in the piping system. So, we change the configuration of boss as a streamlined design to be stabilized the flows. A pressure measurement has been performed to know that the influence of the configuration change. In result, the rate of pressure loss reduction is about 22% at the position of No. 2 and 24.2% at the position of No. 6 in comparison with pre-improved shape.

  • PDF

Analyses of Failure Causes and an Experimental Study on the Opening Characteristics of Swing Check Valves (스윙형 역지밸브의 고장 원인 분석과 열림 특성에 관한 실험적 연구)

  • Song, Seok-Yoon;Yoo, Seong-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.6 s.33
    • /
    • pp.15-25
    • /
    • 2005
  • Check valves playa vital role in the operation and protection of nuclear power plants. Check valves failure in nuclear power plants often lead to a plant transient or trip. The analysis of historical failure data gives information on the populations of various types of check valves, the systems they are installed in, failure modes, effects, methods of detection, and the mechanisms of the failures. A majority of check valve failures are caused by improper application. The experimental apparatus is designed and installed to measure the disc positions with flow velocity, Vopen and Vmin for 3 inch and 6 inch swing check valves. The minimum flow velocity necessary to just open the disc at a full open position is referred to as Vopen, and Vmin is defined as the minimum velocity to fully open the disc and hold it without motion. In the experiments, Vmin is determined as the minimum flow velocity at which the back stop load begins to increase after the disc is fully opened or the oscillation level of disc is reduced below $1^{\circ}$. The results show that the Vmin velocities for 3 inch and 6 inch swing check valves are about 27.3% and 17.5% higher than the Vopen velocities, respectively.

Improvement of a Hydraulic Circuit for an Electro-Hydrostatic Actuator Equipped with a Single Rod Cylinder (편로드 실린더 구동 EHA의 유압 회로 개선)

  • Hong, Yeh-Sun;Kim, Sang-Seok;Kim, Dae-Hyun;Kim, Sang-Beom;Park, Sang-Joon;Choi, Kwan-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The conventional hydraulic circuits for electro-hydrostatic actuators equipped with a single-rod cylinder can oscillate under overrunning load conditions. In this paper the oscillation problem encountered in the conventional hydraulic circuits for EHAs is analyzed and it is shown by simulation results that this problem can be solved by employing a counter balance valve instead of a pilot-operated check valve generally used in the conventional hydraulic circuits.

Development of the Rack-Bar Type Sluice Gate Applying the Hydrostatic Transmission (정유압식 래크바형 수문권양기의 개발)

  • Lee, Seong-Rae
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.15-22
    • /
    • 2010
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, a counter balance valve, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations and experiments.

  • PDF

Development of the Rack-Bar Type Sluice Gate Applying the Hydrostatic Transmission (정유압식 래크바형 수문권양기의 개발)

  • Lee, Seong-Rae
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.86-92
    • /
    • 2010
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, a counter balance valve, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations and experiments.

  • PDF

Analysis of Cylinder Compression Pressure Uniformity and Valve Timing by Start Motor Current and Cylinder Pressure during Cranking (기동 모터의 전류 파형과 실린더 압력 분석을 통한 기관의 압축 압력 균일도 및 밸브 개폐 시점 이상 여부 분석)

  • Kim, In-Tae;Park, Kyoung-Suk;Shim, Beom-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.133-138
    • /
    • 2011
  • Compression pressure of individual cylinder and valve timing have big influence on combustion pressure, indicated mean effective pressure (IMEP), emission, vibration, combustion noise and many other combustion parameters. Therefore, uniformity of compression pressure and valve timing became one of most important engine design and production standard. Conventional method to evaluate compression pressure uniformity is to measure each cylinder pressure by mechanical pressure gage during cranking. This conventional method causes inaccuracy of cylinder pressure measurement because of different cranking speed results from battery status and also causes high manhour and cost. To check valve timing, related FEAD parts should be disassembled and timing mark should be checked manually. This study describes and suggests new methodology to measure compression pressure by analysis of start motor current and to check valve timing by cylinder pressure with high accuracy. With this new methodology, possibility to detect leaky cylinder and wrong valve timing was observed.

Experimental Study of Check Valves in Pumping Systems with Air Entrainment

  • Lee, Thong-See;Low, Hong-Tong;Nguyen, Dinh-Tam;Rong, Wei;Neo, Avan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.140-147
    • /
    • 2008
  • An experiment setup was introduced to study dynamic behaviour of different types of check valves and the effects of air entrainment on the check valve performance under pressure transient condition. The experiment results show that the check valves with low inertia, assisted by springs or small traveling distance/angle gave better performance under pressure transient condition than check valves without these features. Air entrainment was found to affect both wave speed and reverse velocity. With the increase of the initial air void fraction in pipeline, the experiment results show that the wave speed was reduced, the reverse velocity was increased. The first peak pressure increased initially and then decreased with the increase of the initial air void fraction, the pressure surge periods were increased proportionally with air void fraction due to the greatly reduced wave speed. The study can be applied to help choosing suitable check valves for a particular pumping system.

Acoustic Valve Leak Diagnosis and Monitoring System for Power Plant Valves (발전용 밸브누설 음향 진단 및 감시시스템)

  • Lee, Sang-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.425-430
    • /
    • 2008
  • To verify the system performance of portable AE leak diagnosis system which can measure with moving conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured during operation on total 11 valves of the secondary system in nuclear power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, type of valve, pressure difference, valve size and fluid. The results of this field study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve. The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18 ". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF