• Title/Summary/Keyword: Check-Valve

Search Result 210, Processing Time 0.026 seconds

A Study on Optimal Operation for Flare systems (플레어 시스템의 최적 운영방안에 대한 연구)

  • Song, Bang-Un;Bok, Hyeong-Jun;Woo, In-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.1-7
    • /
    • 2019
  • Most oil refineries and chemical plants have flare systems designed to mitigate pressure rises in process facilities in case of emergencies that require the release of large amounts of gas due to sudden process shutdowns such as power outages. However, the rise of the flame of the flare system causes civil complaints from residents around the factory due to visible pollution, and economic loss occurs in the company, which requires constant management. In this study, two items were diagnosed and analyzed in order to derive the optimal operation method of flare system. First, to detect the cause of the rise in flame height, the acoustic leak detector was used to check gas leaks in safety valves and pressure control valves. Second, to identify the cause of flame instability, the pulsation phenomenon was diagnosed through the CFD simulation and modeling experiments of the sealing drum. By confirming the leak at 4.3% of the safety valve and 10% of the pressure control valve, the cause of abnormal sparking was derived. The information presented in this study can be easily applied to any company that has a flare system, and is expected to prevent complaints and product loss.

Implementation of IoT-Based Irrigation Valve for Rice Cultivation (벼 재배용 사물인터넷 기반 물꼬 구현)

  • Byeonghan Lee;Deok-Gyeong Seong;Young Min Jin;Yeon-Hyeon Hwang;Young-Gwang Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.93-98
    • /
    • 2023
  • In paddy rice farming, water management is a critical task. To suppress weed emergence during the early stages of growth, fields are deeply flooded, and after transplantation, the water level is reduced to promote rooting and stimulate stem generation. Later, water is drained to prevent the production of sterile tillers. The adequacy of water supply is influenced by various factors such as field location, irrigation channels, soil conditions, and weather, requiring farmers to frequently check water levels and control the ingress and egress of water. This effort increases if the fields are scattered in remote locations. Automated irrigation systems have been considered to reduce labor and improve productivity. However, the net income from rice production in 2022 was about KRW 320,000/10a on average, making it financially unfeasible to implement high-cost devices or construct new infrastructure. This study focused on developing an IoT-Based irrigation valve that can be easily integrated into existing agricultural infrastructure without additional construction. The research was carried out in three main areas: Firstly, an irrigation valve was designed for quick and easy installation on existing agricultural pipes. Secondly, a power circuit was developed to connect a low-power Cat M1 communication modem with an Arduino Nano board for remote operation. Thirdly, a cloud-based platform was used to set up a server and database environment and create a web interface that users can easily access.

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Coolant Leaking in a T-Branch of Square Cross-Section

  • Choi, Young-Don;Hong, Seok-Woo;Park, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. Standard k-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

Study on the Damping Mechanism of an Hydraulic Type Automotive Seat Damper (자동차용 유압식 시트댐퍼의 댐핑 메카니즘에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.1-6
    • /
    • 2016
  • Typically, the seat of an automotive vehicle generally includes a horizontal seat-cushion portion and a vertical seat-back portion that is operatively connected to the seat-cushion portion. The seat may include a recliner for the reclining of the seat-back portion relative to the seat-cushion portion by the seat occupant. An energy absorber or damper can also be provided for the seat-back portion. Because the recliner is configured to be released at a relatively high speed, and it results in an impact at the end of a folding stroke, the damper needs to dissipate energy as the seat back moves with respect to the seat cushion; therefore, the role of the seat damper in the automotive-seat design is important. In this paper, the mechanism of an hydraulic-type automotive-seat damper is investigated, and the torque characteristic is simulated according to the design-parameter variations such as the orifice area and the working-fluid properties.

Valveless piezoelectric micro-pump exploiting two sided disk type vibrator (디스크형 진동자의 연동 운동을 이용하는 밸브리스 마이크로 압전 펌프)

  • Oh, Jin-Heon;Lim, Jong-Nam;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.159-159
    • /
    • 2009
  • Existence of physical moving parts (ex. check valve) produces several problems (mechanical abrasion, deterioration of reliability, limited temperature performances etc.) in driving pumps. To overcome such problems, we proposed a valveless piezoelectric micro-pump which has new type volume transferring mechanism. The proposed micro-pump has a double faced disk type vibrator that can generate peristaltic motion formed by traveling wave in each surface of a disk. This type of micro-pump is able to apply to a fluid supply system that provides two different kinds of fluid simultaneously. In this paper, we propose a simple and novel design of piezoelectric micro-pump that is peristaltically by piezoelectric actuators and allows the removal of the need for valves of other physically moving parts. The finite elements analysis on the proposed pump model was carried out to verify its operation principle using the commercial analysis software.

  • PDF

Tuning of PID Controller for Hydraulic Positioning System Using Genetic Algorithm (유전 알고리즘을 이용한 유압 위치계의 PID 제어기 동조)

  • Kim, Gi-Bum;Park, Seung-Min;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.93-101
    • /
    • 2016
  • This study presents a simple genetic algorithm to systematically design a PID controller for a hydraulic positioning system operated by a proportional solenoid valve. The inverse dead-zone compensator with nonlinear characteristics is used to cancel out the dead-zone phenomenon in the hydraulic system. The object function considering overshoot, settling time, and control input is adopted to search for optimal PID gains. The designed PID controller is compared with the LQG/LTR controller to check the performance of the hydraulic positioning system in the time and frequency domains. The experimental results show that the hydraulic servo system with the proposed PID controller responds effectively to the various types of reference input.

The Durability Characteristics for BDF 20% in a Common Rail Diesel Engine (커먼레일 디젤기관에서 BDF 20%에 대한 내구특성)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.32-37
    • /
    • 2011
  • Biodiesel fuel is already remarkable alternative fuel in many countries. So, many studies are performed on the environmental or economic effects as well as the characteristics of diesel engine fueled biodiesel in combustion and emission. In this study, an CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 20% biodiesel blended fuel (BDF 20%) with city mode in excess of 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. To check the engine parts (valve and injector), the engine was inspected after test. It was concluded that there were no unusual deteriorations of the engine, or any unusual changes in engine power and exhaust emissions in spite of operation of 300 hours with BDF 20%.

Development of PC-based Auto Inspection System for Smart Battery Protection Circuit Module (PC기반의 스마트 배터리 보호모듈 자동 검사 시스템 개발)

  • Yoon, Tae-Sung;Jang, Gi-Won;Park, Ju-No;Lee, Jeong-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.275-277
    • /
    • 2005
  • In a lithium-ion battery which is being used in many portable electronic goods, electrolyte is disaggregated and then the gas is happened when electric charging volt is over the 4.5V. So, the pressure on the safety valve is increased and electrolyte is leaked out in the cell. It leads to the risk of explosion. On the other hand, in the case which the battery is discharged excessively, the negative pole is damaged and the performance of the battery is deteriorated. The protection module of a lithium-ion battery is used for preventing such risk and the inspection system is needed to check the performance of such protection module. In this research, a PC-based auto inspection system is developed for the inspection of a battery protection module using Dallas chipset. In the inspection system, AVRl28 chip is used as a controller and the communication protocol is developed for the data communication between the protection module and the AVR128 chip. And GPIB interface is used for the control of measuring devices. Also, MMI environment is developed using LabView for convenient monitoring by the tester.

  • PDF

Deep Of Discharge Meter

  • Rattanaphaiboon, Somphon;Sawaengsinkasikit, Winya;Tipsuwanporn, Vittaya;Roengruen, Prapas
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.809-812
    • /
    • 2005
  • Battery is an energetic collector of solar cell system. Battery which is used in the system must have many qualities in the followings. The battery must be "Deep Cycle Battery" type. In addition, the battery is Cleary indicated the percentage of DOD. The indication of DOD is used for calculation other valve used in solar cell system. Currently, the percentage of DOD of battery is fixed by battery manufacture. If users would like to calculate is introduced % DOD, the users have to check the battery at least 12 months. This article is introduced battery deep of discharge meter by using theory of lead acid battery under deep cycle type and including the theory of DC. Current and internal resistance of battery. The data used for analyzing are collected according to the theories. The data will be calculated by monitor unit and controller systems.

  • PDF

Development of the Portable Drug Delivery Systems with a Piezoelectric Micropump (압전 마이크로펌프 방식의 휴대용 약물전달장치 개발)

  • Kim, Sei Yoon;Kim, Young Tae;Seo, Hyun Bae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.71-76
    • /
    • 2015
  • The therapy of injecting a fixed amount of a prescribed drug for a predetermined time is an effective treatment in relieving pain during anticancer treatments. Due to recent medical technology development, cancer is currently classified as a disease that can be managed in the patient's lifetime. If patients were able to use a drug delivery system that was portable, sustainable and had an accurate flow control, they would be able to inject medication whenever they need. In this study we developed a piezoelectric micropump for a drug delivery system by designing a pump chamber, check valve and diaphragm. We also developed a driving circuit that consumes low power and to which we applied a variety of signals. We fabricated a portable drug delivery system with this piezoelectric micropump and driving circuit. In addition, through a performance test, we confirmed that the system can precisely control the drug flow rate.