• Title/Summary/Keyword: Chat-GPT

Search Result 262, Processing Time 0.032 seconds

Enablers and Inhibitors of Generative AI Usage Intentions in Work Environments (업무 환경에서 생성형 AI 사용 의도에 영향을 미치는 촉진 요인과 저해 요인 분석)

  • Park, JunSung;Park, Heejun
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.3
    • /
    • pp.509-527
    • /
    • 2024
  • Purpose: This study aims to investigate the factors influencing the adoption of Generative AI in the workplace, focusing on both enablers and inhibitors. By employing the dual factor theory, this research examines how knowledge support, customization, entertainment, perceived risk, realistic threat, and identity threat impact the intention to adopt Generative AI technologies such as ChatGPT. Methods: Data were collected from 192 participants via MTurk, all of whom had experience using Generative AI. The survey was conducted in June 2024, and the data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) to ensure the validity and reliability of the measurement model. Attention-check questions were used to ensure data quality, and participants provided demographic information at the end of the survey. Results: : The findings reveal that knowledge support and entertainment significantly enhance the intention to adopt Generative AI, whereas realistic threat poses a substantial barrier. Customization, perceived risk, and identity threat did not significantly affect adoption intentions. Conclusion: This study contributes to the literature by addressing the gap in understanding the adoption mechanisms of Generative AI in professional settings. It highlights the importance of promoting AI's knowledge support and entertainment capabilities while addressing employees' concerns about job security. Organizations should emphasize these benefits and proactively mitigate perceived threats to foster a positive reception of Generative AI technologies. The findings offer practical implications for enhancing user acceptance and provide a foundation for future research in this area.

Factors Influencing Seniors' Behavioral Intention of Generative AI Services (시니어의 생성형AI 서비스 이용의도에 영향을 미치는 요인)

  • Sung, Myoung-cheol;Dong, Hak-rim
    • Journal of Venture Innovation
    • /
    • v.7 no.2
    • /
    • pp.41-56
    • /
    • 2024
  • Recently, generative AI services, including ChatGPT, have garnered significant attention. These services appealed not only to digital natives, such as Generation Z, but also to digital immigrants, including seniors. This study aimed to analyze the factors affecting seniors' behavioral intention of generative AI services. A survey targeting seniors was conducted, resulting in 250 valid responses. The data were analyzed using multiple regression analysis. For this purpose, performance expectancy, effort expectancy, social influence, requisite knowledge, biophysical aging restrictions of seniors based on MATOA (Model for the Adoption of Technology by Older Adults), a research model on technology acceptance by seniors and AI hallucinations of generative AI services were set as independent variables. The empirical results were as follows: performance expectancy and social influence had a significant positive impact on seniors' behavioral intention of generative AI services. Additionally, requisite knowledge positively influenced seniors' behavioral intention of generative AI services, while biophysical aging restrictions had a significant negative effect. However, effort expectancy and AI hallucinations did not show a significant influence on seniors' behavioral intention of generative AI services. The variables were ranked by influence as follows: performance expectancy, social influence, requisite knowledge, and biophysical aging restrictions. Based on these research results, academic and practical implications were presented.

An Overview on Importance of Writing in Mathematics Education (수학교육에서 글쓰기의 중요성에 관한 소고)

  • Kim, Jeonghyeon;Choi-Koh, Sangsook
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.591-614
    • /
    • 2023
  • For a long time, mathematics education institutions such as NCTM(National Council of Teachers of Mathematics) have emphasized the essential role of writing, and recent surveys by the Ministry of Education report a decline in foundational academic skills in the post-COVID19 period. The purpose of this study is to redefine the significance of mathematics writing in mathematics education, focusing on competencies highlighted in the field, particularly in the areas of problem-solving, communication, and reasoning. The research findings indicate that writing in problem-solving enhances cognitive organization, fostering the ability to grasp concepts and methods. Writing in communication builds confidence through the meta-cognitive process, and writing in inference allows self-awareness of step-by-step identification of areas lacking understanding. Particularly in the future society where artificial intelligence(AI) is utilized, changes in the learning environment necessitate research for the establishment of authenticity judgment through writing and the cultivation of a proper writing culture.

Inducing Harmful Speech in Large Language Models through Korean Malicious Prompt Injection Attacks (한국어 악성 프롬프트 주입 공격을 통한 거대 언어 모델의 유해 표현 유도)

  • Ji-Min Suh;Jin-Woo Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.451-461
    • /
    • 2024
  • Recently, various AI chatbots based on large language models have been released. Chatbots have the advantage of providing users with quick and easy information through interactive prompts, making them useful in various fields such as question answering, writing, and programming. However, a vulnerability in chatbots called "prompt injection attacks" has been proposed. This attack involves injecting instructions into the chatbot to violate predefined guidelines. Such attacks can be critical as they may lead to the leakage of confidential information within large language models or trigger other malicious activities. However, the vulnerability of Korean prompts has not been adequately validated. Therefore, in this paper, we aim to generate malicious Korean prompts and perform attacks on the popular chatbot to analyze their feasibility. To achieve this, we propose a system that automatically generates malicious Korean prompts by analyzing existing prompt injection attacks. Specifically, we focus on generating malicious prompts that induce harmful expressions from large language models and validate their effectiveness in practice.

Development of An Intelligent G-Learning Virtual Learning Platform Based on Real Video (실 화상 기반의 지능형 G-러닝 가상 학습 플랫폼 개발)

  • Jae-Yeon Park;Sung-Jun Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.79-86
    • /
    • 2024
  • In this paper, we propose a virtual learning platform based on various interactions that occur during real class activities, rather than the existing content delivery-oriented learning metaverse platform. In this study, we provide a learning environment that combines AI and a virtual environment to solve problems by talking to real-time AI. Also, we applied G-learning techinques to improve class immersion. The Virtual Edu platform developed through this study provides an effective learning experience combining self-directed learning, simulation of interest through games, and PBL teaching method. And we propose a new educational method that improves student participation learning effectiveness. Experiment, we test performance on learninng activity based on real-time video classroom. As a result, it was found that the class progressing stably.

Large Language Models: A Comprehensive Guide for Radiologists (대형 언어 모델: 영상의학 전문가를 위한 종합 안내서)

  • Sunkyu Kim;Choong-kun Lee;Seung-seob Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.5
    • /
    • pp.861-882
    • /
    • 2024
  • Large language models (LLMs) have revolutionized the global landscape of technology beyond the field of natural language processing. Owing to their extensive pre-training using vast datasets, contemporary LLMs can handle tasks ranging from general functionalities to domain-specific areas, such as radiology, without the need for additional fine-tuning. Importantly, LLMs are on a trajectory of rapid evolution, addressing challenges such as hallucination, bias in training data, high training costs, performance drift, and privacy issues, along with the inclusion of multimodal inputs. The concept of small, on-premise open source LLMs has garnered growing interest, as fine-tuning to medical domain knowledge, addressing efficiency and privacy issues, and managing performance drift can be effectively and simultaneously achieved. This review provides conceptual knowledge, actionable guidance, and an overview of the current technological landscape and future directions in LLMs for radiologists.

Concept and Application of Groundwater's Platform Concurrency and Digital Twin (지하수의 플랫폼 동시성과 Digital Twin의 개념과 적용)

  • Doo Houng Choi;Byung-woo Kim;E Jae Kwon;Hwa-young Kim;Cheol Seo Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.13-13
    • /
    • 2023
  • 디지털 기술은 오늘날 플랫폼과 디지털 트윈의 기술도입을 통해 현실 세계를 네트워크와 가상세계와의 연결이 통합되어진 가상 현실 세계의 입문 도약이다. 현실에서 가상현실의 사이의 디지털 전환(digital transformation)에는 디지털 기술과 솔루션을 비즈니스의 모든 영역에 통합하는 것이 포함된다. 이러한 디지털 전환의 핵심은 데이터에 관한 것이며, 데이터를 활용하여 가치를 창출하고 고객경험과 비즈니스 영역을 극대화하는 방식을 제공한다. 최적의 데이터를 제공하기 위한 플랫폼과 가상 현실세계 구현을 위한 디지털 트윈의 상호연계 관한 기본 개념은 데이터 수집, 데이터 분석, 데이터 시각화 및 데이터 보고와 같은 데이터 비즈니스이다. 현장 데이터는 디지털 양식을 통해 수집, 기록, 저장된다. 현장 IoT 기반 데이터(사진 및 비디오 매체 등)는 지속적으로 수집되고 종종 다른 데이터베이스에 저장되지만 지리 공간적 위치에 연결되지 않는다. 모든 디지털 발전을 조화시키고 지하수 데이터에서 더 빠른 이해를 도출하기 위해서는 디지털 트윈이 시작되어야 한다. 단일 지하수플랫폼에서 현장 조건을 시각화하고 실시간 데이터를 스트리밍하며, 과거 3D 데이터와 상호작용하여지질 또는 지화학 데이터를 선택적 사용을 위해 지하수 플랫폼과 디지털 트윈이 연계되어야 한다. 데이터를 디지털 정보모델과 연결하면 디지털 트윈에 생명을 불어넣을 수 있지만 디지털 트윈의 가치를 극대화하려면 여전히 데이터 플랫폼 서비스와 전달 방식을 선택해야 한다. 지하수 플랫폼동시성을 갖는 디지털 트윈은 정적 및 동적 데이터를 저장하는 데이터베이스 또는 크라우드 서비스에서 데이터를 가져오는 API(애플리케이션 프로그래밍 인터레이스), 디지털 트윈을 위한 호스팅 공간, 디지털 대상을 구축하는 소프트웨어, 구성 요소 간 읽기/쓰기를 위한 스크립트, chatGPT 및 API를 활용할 수 있다. 이를 통해 수집된 데이터의 실시간 양방향 통신기술인 지하수 플랫폼 기술을 활용하여 디지털 트윈을 적용하고 완성할 수 있고, 이를 지하수 분야에도 그대로 적용할 수 있다. 지하수 분야의 디지털 트윈 기술의 근간은 지하수 모니터링을 위한 관측장치와 이를 활용한 지하수 플랫폼의 구축 및 양방향 자료전송을 통한 분석 및 예측기술이다. 특히 낙동강과 같이 유역면적이 넓고 유역 내 지자체가 많아 이해관계가 다양하며, 가뭄과 홍수/태풍 등 기후위기에 따른 극한 기상이변가 자주 발생하고, 또한 보 및 하굿둑 개방 등 정부정책 이행에 따른 민원이 다수 발생하는 지역의 경우 하천과 유역에 대한 지하수 플랫폼과 디지털 트윈의 동시성 기술적용 시 지하수 데이터에 대한 고려가 반드시 수반되어야 한다.

  • PDF

Introduction to the Technology of Digital Groundwater (Digital Groundwater의 기술 소개)

  • Hyeon-Sik Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.10-10
    • /
    • 2023
  • 본질적으로 복잡하고 다양한 특성을 가지는 우리나라(도시, 농어촌, 도서산간, 섬 등)의 물 공급 시스템은 생활수준의 향상, 기후변화 및 가뭄위기, 소비환경 중심의 요구와 한정된 수자원을 잘 활용하기 위한 운영 및 관리가 매우 복잡하다. 이로 인한 수자원 고갈과 가뭄위기 등에 관련한 대책 및 방안으로 대체수자원인 지하수 활용방안들이 제시되고 있다. 따라서, 물 관리 시스템과 관련한 디지털 기술은 오늘날 플랫폼과 디지털 트윈의 도입을 통해 네트워크와 가상현실 세계의 연결이 통합되어진 4차 산업혁명 사업이 현실화되고 있다. 물 관리 시스템에 사용된 새로운 디지털 기술 "BDA(Big Data Analytics), CPS(Cyber Physical System), IoT(Internet of Things), CC(Cloud Computing), AI(Artificial Intelligence)" 등의 성장이 증가함에 따라 가뭄대응 위기와 도시 지하수 물 순환 시스템 운영이 증가하는 소비자 중심의 수요를 충족시키기 위해서는 지속가능한 지하수 공급을 효과적으로 관리되어야 한다. 4차 산업혁명과 관련한 기술성장이 증가함으로 인한 물 부문은 시스템의 지속가능성을 향상시키기 위해 전체 디지털화 단계로 이동하고 있다. 이러한 디지털 전환의 핵심은 데이터에 관한 것이며, 이를 활용하여 가치 창출을 위해서 "Digital Groundwater Technology/Twin(DGT)"를 극대화하는 방식으로 제고해야 한다. 현재 당면하고 있는 기후위기에 따른 가뭄, 홍수, 녹조, 탁수, 대체수자원 등의 수자원 재해에 대한 다양한 대응 방안과 수자원 확보 기술이 논의되고 있다. 이에 따른 "물 순환 시스템"의 이해와 함께 문제해결 방안도출을 위하여 이번 "기획 세션"에서는 지하수 수량 및 수질, 정수, 모니터링, 모델링, 운영/관리 등의 수자원 데이터의 플랫폼 동시성 구축으로부터 역동적인 "DGT"을 통한 디지털 트윈화하여, 지표수-토양-지하수 분야의 특화된 연직 프로파일링 관측기술을 다각도로 모색하고자 한다. "Digital Groundwater(DG)"는 지하수의 물 순환, 수량 및 수질 관리, 지표수-지하수 순환 및 모니터링, 지하수 예측 모델링 통합연계를 위해 지하수 플랫폼 동시성, ChatGPT, CPS 및 DT 등의 복합 디지털화 단계로 나가고 있다. 복잡한 지하환경의 이해와 관리 및 보존을 위한 지하수 네트워크에서 수량과 수질 데이터를 수집하기 위한 스마트 지하수 관측기술 개발은 큰 도전이다. 스마트 지하수 관측기술은 BD분석, AI 및 클라우드 컴퓨팅 등의 디지털 기술에 필요한 획득된 데이터 분석에 사용되는 알고리즘의 복잡성과 데이터 품질에 따라 영향을 미칠 수 있기 때문이다. "DG"는 지하수의 정보화 및 네트워크 운영관리 자동화, 지능화 등을 위한 디지털 도구를 활용함으로써 지표수-토양층-지하수 네트워크 통합관리에 대한 비전을 만들 수 있다. 또한, DGT는 지하수 관측센서의 1차원 데이터 융합을 이용한 지하수 플랫폼 동시성과 디지털 트윈을 연계할 수 있다.

  • PDF

The Use of Generative AI Technologies in Electronic Records Management and Archival Information Service (전자기록관리 업무 및 기록정보서비스에서의 생성형 AI 기술 활용)

  • Yoona Kang;Hyo-Jung Oh
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.23 no.4
    • /
    • pp.179-200
    • /
    • 2023
  • Records management institutions in Korea generally face a situation where they lack the workforce to manage the vast amount of electronic records. If electronic records management tasks and archival information services can be automated and intelligentized, the workload can be reduced and the service satisfaction of users can be improved. Therefore, this study proposes to utilize "generative AI" technology in records management practice. To achieve this, the study first examined previous research that aimed to intelligently automate various tasks in the field of records management. The fundamental concepts of generative AI were subsequently outlined, and domestic cases of generative AI applications were investigated. Next, the scope of applying generative AI to the field of records management was defined, and specific utilization strategies were proposed based on this. Regarding the strategies, the effectiveness was verified by presenting results from applying commercial generative AI services or citing examples from other fields. Lastly, the benefits and implications of using generative AI technology in the field of records management, as well as limitations that must be addressed in advance, were presented. This study holds significance in that it identified tasks within the field of records management where generative AI technology can be integrated and proposed effective utilization strategies tailored to those tasks.

Enhancing Leadership Skills of Construction Students Through Conversational AI-Based Virtual Platform

  • Rahat HUSSAIN;Akeem PEDRO;Mehrtash SOLTANI;Si Van Tien TRAN;Syed Farhan Alam ZAIDI;Chansik PARK;Doyeop LEE
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1326-1327
    • /
    • 2024
  • The construction industry is renowned for its dynamic and intricate characteristics, which demand proficient leadership skills for successful project management. However, the existing training platforms within this sector often overlook the significance of soft skills in leadership development. These platforms primarily focus on safety, work processes, and technical modules, leaving a noticeable gap in preparing future leaders, especially students in the construction domain, for the complex challenges they will encounter in their professional careers. It is crucial to recognize that effective leadership in construction projects requires not only technical expertise but also the ability to communicate effectively, collaborate with diverse stakeholders, and navigate complex relationships. These soft skills are critical for managing teams, resolving conflicts, and driving successful project outcomes. In addition, the construction sector has been slow in adopting and harnessing the potential of advanced emerging technologies such as virtual reality, artificial intelligence, to enhance the soft skills of future leaders. Therefore, there is a need for a platform where students can practice complex situations and conversations in a safe and repeatable training environment. To address these challenges, this study proposes a pioneering approach by integrating conversational AI techniques using large language models (LLMs) within virtual worlds. Although LLMs like ChatGPT possess extensive knowledge across various domains, their responses may lack relevance in specific contexts. Prompt engineering techniques are utilized to ensure more accurate and effective responses, tailored to the specific requirements of the targeted users. This involves designing and refining the input prompts given to the language model to guide its response generation. By carefully crafting the prompts and providing context-specific instructions, the model can generate responses that are more relevant and aligned with the desired outcomes of the training program. The proposed system offers interactive engagement to students by simulating diverse construction site roles through conversational AI based agents. Students can face realistic challenges that test and enhance their soft skills in a practical context. They can engage in conversations with AI-based avatars representing different construction site roles, such as machine operators, laborers, and site managers. These avatars are equipped with AI capabilities to respond dynamically to user interactions, allowing students to practice their communication and negotiation skills in realistic scenarios. Additionally, the introduction of AI instructors can provide guidance, feedback, and coaching tailored to the individual needs of each student, enhancing the effectiveness of the training program. The AI instructors can provide immediate feedback and guidance, helping students improve their decision-making and problem-solving abilities. The proposed immersive learning environment is expected to significantly enhance leadership competencies of students, such as communication, decision-making and conflict resolution in the practical context. This study highlights the benefits of utilizing conversational AI in educational settings to prepare construction students for real-world leadership roles. By providing hands-on, practical experience in dealing with site-specific challenges, students can develop the necessary skills and confidence to excel in their future roles.