Now we are facing severe environmental issues such as global warming. Due to these, the concerns about eco-friendly energy have been increased. Kyoto protocol and Copenhagen climate change conference are circumstantial evidence of it. With these trends, the interests for the Electric Vehicles(EVs) which do not emit any harmful gases have gradually been raised. Unfortunately, however, massive connection of EVs to the power system could cause negative impacts such as voltage variations, frequency variations and increase of demand power. To prevent the mentioned issues, KEPCO adopts Time-of-Use(ToU) price for EVs charging. Nevertheless, it is important to verify the propriety of the charging system. In this paper, therefore, we used pre-introduced price elasticity concept to predict possible Demand Response(DR) on charging of EVs. And analyzed possible demand power increase according to various price elasticities. Simulation results show that given ToU based charging system would not enough to control the increase of demand power by EVs on the power system. It is concluded, therefore, additional methods and/or algorithms are required.
The most concerning issue in these days is the energy crisis by increasing threat of global warming and depletion of natural resources. In the situations, the Plug-in Hybrid Electric Vehicle (PHEV) is drawing attention from many countries for the next generation's car which has higher fuel efficiency and lower environmental impact. This paper presents simulation results about the limit capacity of central power-grid which doesn't have enough surplus electric power for charging PHEVs. Therefore, this paper also presents a smart charging system that can charge the PHEVs with a function of distributing demands of charging. The smart charging system is an agent facility between the government and consumer, which can recommend the best time to charge the battery of PHEVs by the lowest energy cost. This function of choosing time-slots is the technical system for the government which wants to control the consumption rate of electric power for PHEVs. Finally, this paper presents the economic feasibility of PHEVs from the two kinds of price system, midnight electric price and home electric price.
With the current global need for eco-friendly energies, the large scale use of Electric Vehicles (EVs) is predicted. However, the need to frequently charge EVs to an electrical power system involves risks such as rapid increase of demand power. Therefore, in this paper, we propose a practical smart EV charging scheme considering a Time-of-Use (ToU) price to prevent the rapid increase of demand power and provide load leveling function. For a more practical analysis, we conduct simulations based on the actual distribution system and driving patterns in the Republic of Korea. Results show that the proposed method provides a proper load leveling function while preventing a rapid increase of demand power of the system.
In this paper, proposed a multi-channel charging control strategy for electric vehicle. This control strategy can adjust the charging power according to the calculated state-of-charge (SOC). Electric vehicle (EV) charging system using Particle Swarm Optimization (PSO) algorithm is proposed. A stochastic optimization algorithm technique such as PSO in the time-of-use (TOU) price used for the energy cost minimization. Simulation results show that the energy cost can be reduced using proposed method.
As one of the main trends in global industries is eco-friendly energy, the interest on Electric Vehicle(EV) has been increased. However, if large amount of EVs start to charging, it could cause rapid increase in demand power of the power system. To guarantee stable operation of the power system, those unpredictable power consume should be mitigated. In this paper, therefore, we propose a practical smart EVs charging scheme to prevent the rapid increase of the demand power and also provide load flattening function. For that we considered Time-of-Use(ToU) price and actual data such as driving pattern and parameters of distribution system. Simulation results show that the proposed method provides proper load flattening function while preventing the rapid increase of the demand power of the power system.
Uncoordinated charging of large-scale electric vehicles (EVs) will have a negative impact on the secure and economic operation of the power system, especially at the distribution level. Given that the charging load of EVs can be controlled to some extent, research on the optimal charging control of EVs has been extensively carried out. In this paper, two possible smart charging scenarios in China are studied: centralized optimal charging operated by an aggregator and decentralized optimal charging managed by individual users. Under the assumption that the aggregators and individual users only concern the economic benefits, new load peaks will arise under time of use (TOU) pricing which is extensively employed in China. To solve this problem, a simple incentive mechanism is proposed for centralized optimal charging while a rolling-update pricing scheme is devised for decentralized optimal charging. The original optimal charging models are modified to account for the developed schemes. Simulated tests corroborate the efficacy of optimal scheduling for charging EVs in various scenarios.
Recently, many studies have suggested that an electric vehicle (EV) is one of the means for increasing the reliability of power systems in new energy environments. EVs can make a contribution to improving reliability by providing frequency regulation in power systems in which the Vehicle-to-Grid (V2G) technology has been implemented and, if economically viable, can be helpful in increasing power system reliability. This paper presents a stochastic method for optimal coordination of charging and frequency regulation decisions for an EV aggregator using the Least Square Monte-Carlo (LSMC) with modeling of electricity price uncertainty. The LSMC can be used to assess the value of options based on electricity price uncertainty in order to simultaneously optimize the scheduling of EV charging and regulation service for the EV aggregator. The results of a numerical example show that the proposed method can significantly improve the expected profits of an EV aggregator.
A potential breakthrough of the electrification of the vehicle fleet will incur a steep rise in the load on the electrical power grid. To avoid huge grid investments, coordinated charging of those vehicles is a must. In this paper, we assess algorithms to schedule charging of plug-in (hybrid) electric vehicles as to minimize the additional peak load they might cause. We first introduce two approaches, one based on a classical optimization approach using quadratic programming, and a second one, market based coordination, which is a multi-agent system that uses bidding on a virtual market to reach an equilibrium price that matches demand and supply. We benchmark these two methods against each other, as well as to a baseline scenario of uncontrolled charging. Our simulation results covering a residential area with 63 households show that controlled charging reduces peak load, load variability, and deviations from the nominal grid voltage.
Traction battery chargers are an integral part of the required charging infrastructure. EV charging systems are continuing to improve in design. The newer types are affecting power quality to a much lesser extent. High efficiency battery chargers are being designed and produced which form little or no harmonic distortion. In addition chargers are becoming smaller and lighter. This is due mainly to the fact that there are improvements in the power electronics industry, especially with respected to IGBTs. Lower costs are achieved by the reduction in price of the IGBTs, standard magnetic material and small cores for inductors and transformers. But electric vehicles occupy a relatively small market niche at present. Therefore with already existing power supply networks, establishment of EV infrastructure can safeguard the service value of present vehicle as well as ensure the ability to charge a significant number of such vehicle. In this paper, we surveyed the update charging technologies according to the conductive charging, inductive charging and fast charging. Then we suggested cost-optimized charging infrastructure in consideration of the economical, political and technical standpoint.
본 연구에서는 이항로짓모형 기반의 시장분할을 고려한 전기차 선택모형을 추정하여 전기차 잠재 수요층의 전기차 구매행태를 분석하였다. 모형 구축을 위하여 서울시에 거주하는 차량운전자를 대상으로 전기차 구매가격, 공용 충전인프라 구축 수준, 1회 충전 주행가능거리 등의 가상 시나리오에 대하여 전기차 선택여부를 조사하였다. 차급별로 구분하면 경 소형 차급 보유자는 차량 구매가격이 가장 큰 영향을 미치며, 중 대형 차급 보유자는 공용 충전인프라 구축 수준을 중요시하는 것으로 나타났다. 주택유형으로 분할한 경우 공동주택 거주자는 전기차 선택 시 공용 충전인프라 구축 수준을 가장 크게 고려하지만, 단독주택 거주자는 차량 구매가격에 가장 민감한 것으로 분석되었다. 이상의 결과를 토대로 자동차 제작사의 전기차 보급 전략이 전략적 구매층을 어디로 설정하느냐에 따라 달라져야 함을 보여주며, 정부의 전기차 보급정책으로는 공용 충전인프라의 확대가 가장 우선적으로 추진되어야 할 필요가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.