• Title/Summary/Keyword: Charged clusters

Search Result 19, Processing Time 0.025 seconds

Temperature Dependence of the Deposition Behavior of Yttria-stabilized Zirconia CVD Films: Approach by Charged Cluster Model

  • Hwang, Nong-Moon;Jeon, In-Deok;Latifa Gueroudji;Kim, Doh-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.3
    • /
    • pp.218-224
    • /
    • 2001
  • Yttria-stabilized zirconia (YSZ) films were deposited with varying temperatures of ZrCl$_4$between 250~55$0^{\circ}C$ with YCl$_3$and the substrate at 100$0^{\circ}C$. Nanoamperes per square centimeter of the electric current were measured in the reactor during deposition and the current increased with increasing evaporation temperature of ZrCl$_4$. The zirconia nanometer size clusters were captured on the grid membrane near the substrate during the CVD process and observed by transmission electron microscopy (TEM). The deposition rate decreased with increasing evaporation temperature of ZrCl$_4$. A cauliflower-shaped structure was developed at 25$0^{\circ}C$ then gradually changed to a faceted-grain structure above 35$0^{\circ}C$. Dependence of the growth rate and the morphological evolution on the evaporation temperature of ZrCl$_4$was approached by the charged cluster model.

  • PDF

A Thermogravimetric Study of the Non-stoichiometry of Iron-Doped Nicked Oxide$(Ni_{1-x}Fe_x)1-{\delta}$O

  • Krafft, Kunt N.;Martin, Manfred
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.156-161
    • /
    • 1998
  • We have measured changes of the non-stoichiometry, $\Delta\delta$, in Fe-doped nicked oxide , by thermogravimetry for four iron fractions, x=0.01, 0.031, 0.057 and 0.10, and three temperatures, T=1273, 1373 and 1473 K. The obtained data can be modelled by a defect structure in which substitutional trivalent iron ions, FeNi, are compensated by cation vacancies, $V_{Ni}$", and (4:1)-clusters. These clusters consist of tetravalent interstitial iron, $Fe_i\;^4$

  • PDF

Single Crystal Structure of Pure Inorganic Nanocomposite $[GaO_4Al_12(OH)_24(H_2O)_12][Al(OH)_6Mo_6O_{18}]_2(OH)$·$30H_2O$

  • Son, Jeong Ho;Gwon, Yeong Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1224-1230
    • /
    • 2001
  • Single crystals of nanocomposite [GaO4Al12(OH)24(H2O)12][Al(OH)6Mo6O18]2(OH)${\cdot}$30H2O, 2, were obtained by the reaction between [GaO4Al12(OH)24(H2O)12]7+ and [Mo7O24]6- clusters in an aqueous solution, analogously to the [AlO4Al12(OH)24(H2O)12][Al(OH)6Mo6O18]2(OH)${\cdot}$29.5H2O nanocomposite, 1. The crystal structure of 2 was determined by single crystal x-ray diffraction; space group $C2}c$ (No. 15), a = 27.418(2) $\AA$, b = 15.647(2) $\AA$, c = 23.960(4) $\AA$, $\beta$ = $102.850(9)^{\circ}$, V = 10,021.5(20) $\AA3$ , Z = 4. Detailed analysis of the structural data show that the clusters are held by intimate hydrogen bondings of the surface O2- and OH- groups of the clusters as well as the ionic interactions between the oppositely charged cluster ions.

A Model for Diffusive Shock Acceleration of Protons in Intracluster Shocks and Gamma-ray and Neutrino Emissions from Clusters of Galaxies

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.54.3-54.3
    • /
    • 2019
  • During the formation of large-scale structures in the universe, shocks with the sonic Mach number Ms <~ 5 are naturally induced by supersonic flow motions of baryonic matter in the intracluster medium (ICM). Cosmic rays (CRs) are expected to be accelerated via diffusive shock acceleration (DSA) at these ICM shocks, although the existence of CR protons in the ICM remains to be confirmed through gamma-ray observations. Based on the results obtained from kinetic plasma simulations, we build an analytic DSA model for weak, quasi-parallel shocks in the test-particle regime. With our DSA model, the CR acceleration efficiency ranges ~ 0.001 - 0.02 in supercritical quasi-parallel shocks with sonic Mach number Ms ~ 2.25 - 5, and the acceleration would be negligible in subcritical shocks wth Ms <~ 2.25. Adopting our DSA model, we estimate gamma-ray and neutrino emissions from clusters of galaxies by performing cosmological hydrodynamic simulations. The estimated gamma-ray flux is below the Fermi-LAT upper limit. In addition, the possible neutrino emission due to the decay of charged pions in galaxy clusters would be about <~ 1% of the atmospheric neutrino intensity in the energy range of <~ 100 GeV. In this talk, we will discuss the implication of our results.

  • PDF

Theoretical Studies of the Structures and Electronic Properties of CumSiOm+1 Clusters (m = 0 - 7) (CumSiOm+1 클러스터(m = 0 - 7)의 분자구조 그리고 전기적 특성에 관한 이론 연구)

  • Na, Ho-Hyun;Nam, Seong-Hyun;Lee, Gi-Yun;Jang, Ye-Seul;Yoon, Duck-Young;Bae, Gyun-Tack
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.4
    • /
    • pp.239-244
    • /
    • 2016
  • We investigated the structures and electronic properties of CumSiOm+1 clusters with m = 0 - 7. For these clusters, we replaced a Cu atom in the copper oxide clusters with a Si atom. The B3LYP functional and LANL2DZ basis set were used for optimization of the molecular structures of all neutral and charged clusters. The bond distances, bond angles, and Mulliken charges were calculated to study the structural properties. In addition, in order to understand the electronic properties, we examined the ionization energies, electronic affinities, and second differences in energies.

COSMIC RAY ACCELERATION DURING LARGE SCALE STRUCTURE FORMATION

  • BLASI PASQUALE
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.483-491
    • /
    • 2004
  • Clusters of galaxies are storage rooms of cosmic rays. They confine the hadronic component of cosmic rays over cosmological time scales due to diffusion, and the electron component due to energy losses. Hadronic cosmic rays can be accelerated during the process of structure formation, because of the supersonic motion of gas in the potential wells created by dark matter. At the shock waves that result from this motion, charged particles can be energized through the first order Fermi process. After discussing the most important evidences for non-thermal phenomena in large scale structures, we describe in some detail the main issues related to the acceleration of particles at these shock waves, emphasizing the possible role of the dynamical backreaction of the accelerated particles on the plasmas involved.

Uptake Effects of Two Electrons for Relative Stability and Atomic Structures of Carbon Cluster Isomers of C20: ab initio Methods

  • Lee, Wang-Ro;Lee, Chang-Hoon;Kang, Jin-Hee;Park, Sung-Soo;Hwang, Yong-Gyoo;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.445-448
    • /
    • 2009
  • This study examined the effect of the uptake of one and two electrons on the atomic structure of three isomers of $C_{20}$ clusters, namely the ring, bowl (corannulene like), and cage (the smallest fullerene). Geometry optimizations were performed using the hybrid density functional (B3LYP) methods for neutral, singly and doubly charged $C_{20},\;{C_{20}}^-,and\;{C_{20}}^{2-}$. These results show that the symmetry of the lowest energies for ring and bowl isomers were not changed, whereas the increasing order of energy for the cage (the smallest fullerene) isomers was changed from $D_{2h}\;<\;C_{2h}\;{\leq}\;C_2\;of\;C_{20}\;through\;Ci\;<\;C_{2h}\;<\;C_2\;<\;D_{2h}\;of\;{C_{20}}^-\;to\;Ci\;<\;C_2\;<\;D_{2h}\;<\;C_{2h}\;of\;{C_{20}}^{2-}$. The reduced symmetry isomers of the cage have comparative energy and the ground state symmetry of the neutral and single and double charged $C_{20}$ decreased with increasing number of electrons taken up in the point of energetics. Interestingly, the difference in energy between the ground state and the next higher energy state of ${C_{20}}^{2-}$ was 3.5kcal/mol, which is the largest energy gap of the neutral, single anion and double anion of the cage isomers examined.

Cloning and Sequence Analysis of Two Catechol-degrading Gene Clusters from a Phenol-utilizing Bacterium Pseudomonas putida SM25

  • Jung, Young-Hee;Ka, Jong-Ok;Cheon, Choong-Ⅰll;Lee, Myeong-Sok;Song, Eun-Sook;Daeho Cho;Park, Sang-Ho;Ha, Kwon-Soo;Park, Young-Mok
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • A 6.1 kb Sph I fragment from the genomic DNA of Pseudomonas putida SM 25 was cloned into the veetor pUC19. The open reading frame of catB was found to consist of 1,122 nucleotides. The sequence alignment of the catB gene products from different kinds of bacteria revealed an overall identity ranging from 40 to 98%. The catC gene contained an open reading frame of 96 codons, from which a protein with a molecular mass of about 10.6 kDa was predicted. The amino acids in the proposed activesite region of CatC were found to be almost conserved, including the charged residues. Since the catBC genes in P. putida SM25 were tightly linked, the could be regulated under coordinate transcription, and transcribed from a single promoter located upstream of the catB gene, as in P. putida RBI.

Theoretical Study of Flourine Doping Effect on the Y-Ba-Cu-O Superconductor (Y-Ba-Cu-O 초전도체의 불소 도핑효과에 대한 이론적 연구)

  • Choi, U-Sung;Park, Choon-Bae;Song, Min-Jong;Lee, Wang-Ro;Lee, Kee-Hag
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.134-136
    • /
    • 1993
  • Using the extended H$\ddot{u}$ckel molecular orbital method in connection with the tight binding model, we have studied electronic structure and related properties of superconducting $YBa_2Cu_3O_{7-x}$ crystals in which O-atoms in regular sites were selectively replaced with F atoms. The calculations are based on the crystal structure of Y-Ba-Cu-O obtained by Beno et al.. We use atomic coordinates that refer to the unrelaxed Y-Ba-Cu-O system. In analogy to the isomerism problem with molecules, we discuss all possible combinations of F-substitutions in O-sites with one, two, and four F atoms. The calculations are carried out within charged clusters model for the analogues of the YBa-free copperoxide. Our results suggest that the electronic structure of the symmetrically F-substituted or F-added compound is closer to that of the oxygen-deficient superconducting compound than that obtained from unsymmetrical substitution. This applies in particular if O is replaced with in an O(1) site. This suggests that superconductivity is very sensitive to the oxygen content of the $CuO_2$ layers.

  • PDF