Cloning and Sequence Analysis of Two Catechol-degrading Gene Clusters from a Phenol-utilizing Bacterium Pseudomonas putida SM25

  • Jung, Young-Hee (Department of Biological Science, Sookmyung Women′s University) ;
  • Ka, Jong-Ok (Department of Agricultural Biology, Seoul National University) ;
  • Cheon, Choong-Ⅰll (Department of Biological Science, Sookmyung Women′s University) ;
  • Lee, Myeong-Sok (Department of Biological Science, Sookmyung Women′s University) ;
  • Song, Eun-Sook (Department of Biological Science, Sookmyung Women′s University) ;
  • Daeho Cho (Department of Biological Science, Sookmyung Women′s University) ;
  • Park, Sang-Ho (Department of Food Science & Technology, Chunnam National University) ;
  • Ha, Kwon-Soo (Department of Molecular Biochemistry, Kangwon National University School of Medicine) ;
  • Park, Young-Mok (Korea Basic Science Institute)
  • Published : 2003.06.01

Abstract

A 6.1 kb Sph I fragment from the genomic DNA of Pseudomonas putida SM 25 was cloned into the veetor pUC19. The open reading frame of catB was found to consist of 1,122 nucleotides. The sequence alignment of the catB gene products from different kinds of bacteria revealed an overall identity ranging from 40 to 98%. The catC gene contained an open reading frame of 96 codons, from which a protein with a molecular mass of about 10.6 kDa was predicted. The amino acids in the proposed activesite region of CatC were found to be almost conserved, including the charged residues. Since the catBC genes in P. putida SM25 were tightly linked, the could be regulated under coordinate transcription, and transcribed from a single promoter located upstream of the catB gene, as in P. putida RBI.

Keywords

References

  1. J. Bacteriol. v.170 Transcriptional regulation, nucleotide sequence, and localization of the promoter of the catBC operon in Pseudomonas putida Aldrich,T.L.;A.M.Chakrabarty
  2. Gene v.52 Cloning and complete nucleotide sequence determination of the catB gene encoding cis, cis-muconate lactonizing enzyme Aldrich,T.L.;B.J.Frantz;F.Gill;J.J.Kilbane;A.M.Chakrabarty https://doi.org/10.1016/0378-1119(87)90045-X
  3. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Bradford,M.M. https://doi.org/10.1016/0003-2697(76)90527-3
  4. J. Bacteriol. v.173 In vitro determination of the effect of indoleglycerol phosphate on the interaction of purified TrpI protein with its DNA-binding sites Chang,M.;I.P.Crawford
  5. Mol. Microbiol. v.18 Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB8250 Ehrt,S.;F.Schirmer;W.Hillen https://doi.org/10.1111/j.1365-2958.1995.mmi_18010013.x
  6. J. Bacteriol. v.179 Characterization of catabolic genes from Rhodococcus erythropolis Eulberg,D.;L.A.Golovleva;M.Schlomann
  7. J. Bacteriol. v.180 Evolutionary relationship between chlorocatechol catabolic enzymes from Rhodococcus opacus 1CP and their counterparts in proteobacteria: sequence divergence and functional convergence Eulberg,D.;E.M.Kourbatova;L.A.Golovleva;M.Schlomann
  8. Gene v.206 Characterization of a gene cluster from Ralstonia eutropha JMP134 encoding metabolism of 4-methylmuconolactone Erb,R.W.;K.N.Timmis;D.H.Pieper https://doi.org/10.1016/S0378-1119(97)00565-9
  9. Proc. Natl. Acad. Sci. USA v.84 Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation Frantz,B.;A.M.Chakrabarty https://doi.org/10.1073/pnas.84.13.4460
  10. J. Bacteriol. v.169 Nucleotide sequence and expression of clcD, a plasmid-born dienelactone hydrolase gene from Pseudomonas sp. strain B13 Frantz,B.;K.L.Ngai;D.K.Chatterjee;L.N.Ornston;A.M.Chakrbarty
  11. J. Mol. Biol. v.182 Crystal structure of muconate lactonizing enzyme at 6.5 resolution Goldman,A.;D.L.Ollis;K.Ngai;T.A.Seitz https://doi.org/10.1016/0022-2836(85)90352-3
  12. Mol. Cells v.7 Tn5 tagging of the phenol-degrading gene on the chromosome of Pseudomonas putida Han,E.M.;Y.H.Jung;H.Y.On;M.S.Lee;Y.K.Yang;Y.S.Kim;C.K.Kim;K.S.Lee;K.H.Min
  13. Proc. Natl. Acad. Sci. USA. v.95 Evolution of an enzyme active site: the structure of a new crystal form of muconate lactonizing enzyme compared with mandelate racemase and enolase Hasson,M.S.;I.Schlichting;J.Moulai;K.Taylor;W.Barrett;G.L.Kenyon;P.C.Babbitt;J.A.Gerlt;G.A.Petsko;D.Ringe https://doi.org/10.1073/pnas.95.18.10396
  14. J. Bacteriol. v.91 Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Syntheis of enzymes by the wild type Hegeman,G.D.
  15. Appl. Environ. Microbiol. v.58 Gene probe analysis of soil microbial populations selected by amendment with 2,4-dichlorophenoxyacetic acid Holben,W.E.;B.M.Schroeter;V.G.M.Calabrese;R.H.Olsen;I.K.Kukor;V.O.Biederbeck;A.E.Smith;J.M.Tiedje
  16. J. Bacteriol. v.177 Discontinuities in the evolution of Pseudomonas putida cat genes Houghton,J.E.;T.M.Brown;A.J.Appel;E.J.Hughe;L.N.Ornston https://doi.org/10.1002/path.1711770411
  17. J. Mol. Biol. v.184 Low resolution crystal structure of muconolactone isommerase a decamer with a 5-fold symmetry axis Katz,B.A.;O.David;H.W.Wyckoff https://doi.org/10.1016/0022-2836(85)90382-1
  18. J. Mol. Biol. v.205 Crystal structure of muconolactone isomerase at 3.3 resolution Katti,S.K.;B.Katz;H.W.Wyckoff https://doi.org/10.1016/0022-2836(89)90226-X
  19. Biochem. Biophys. Res. Comm. v.243 Organization and transcriptional characterization of the cat gene cluster in Acinetobacter lwoffii K24 Kim,S.I.;S.H.Lee;J.S.Choi;K.S.Ha https://doi.org/10.1006/bbrc.1997.7912
  20. J. Bacteriol. v.179 Cloning and characterization of two catA genes in Acinetobacter lwoffii K24 Kim,S.I.;S.H.Leem;J.S.Choi;Y.H.Chung;S.H.Kim;Y.M.Park;Y.K.Park;Y.N.Lee;K.S.Ha
  21. J. Bacteriol. v.170 Cloning and expression of the catA and catBC gene cluster from Pseudomonas aeuroginosa PAO Kukor,J.J.;R.H.Olsen;D.P.Ballon
  22. Gene v.226 Cloning and sequence analysis of two catecholdegrading gene clusters from the aniline-assimilating bacterium Frateuria species ANA-18 Murakami,S.;A.Takashima;J.Takemoto;S.Takenaka;R.Shinke https://doi.org/10.1016/S0378-1119(98)00560-5
  23. Nature v.347 Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous Neidhart,D.J.;G.L.Kenyon;J.A.Gerlt;G.A.Petsko https://doi.org/10.1038/347692a0
  24. J. Bacteriol. v.170 DNA sequence of the Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene catA : Evidence for evolutionary divergence of intradiol dioxygenases by acquisition of DNA sequence repetitions Neidle,E.L;C.Hartnett;S.Bonitz;L.N.Ornston
  25. Appl. Environ. Microbiol. v.65 The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate Ogawa,N.;K.Miyashita
  26. J. Biol. Chem. v.241 The conservation of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. IV. Regulation Ornston,L.N.
  27. J. Bacteriol. v.174 Roles of catR and cis,cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida Parsek,M.R.;D.L.Shinabarger;R.K.Rothmel;A.M.Chakrabarty
  28. Trends Biochem. Sci. v.18 On the origin of enzymatic species Petsko,G.A.;G.L.Kenyon;J.A.Gerlt;D.Ringe;J.W.Korzarich https://doi.org/10.1016/0968-0004(93)90091-Z
  29. Molecular cloning: A laboratory manual Sambrook,J.;E.F.Fritsch;T.Maniatis
  30. J. Microbiol. v.39 Physical analysis of nahQ and tnpA genes from Pseudomonas fluorescens Seol,J.Y.;S.Y.Cho;K.H.Min
  31. J. Bacteriol. v.165 Cloning and expression of Acinetobacter calcoaceticus catBCDE gene in Pseudomonas putida and Escherichia coli Shanley,M.S.;E.L.Neidle;R.E.Parales;L.N.Ornston
  32. J. Bacteriol. v.109 Gene control of enzyme induction in the β-ketoadipate pathway of Pseudomonas putida: deletion mapping of cat mutations Wheelis,M.L.;L.N.Ornston
  33. Genetics v.66 The genetic control of dissimilartory pathways in Pseudomonas putida Wheelis,M.L.;R.Y.Stainer
  34. J. Bacteriol. v.109 Gene control of enzyme induction in the β-ketoadipate pathway of Pseudomonas putida: two-point cross with a regulartory mutant strain Wu,C.H.;M.K.Ornston;L.N.Ornston