• Title/Summary/Keyword: Charged Particle

Search Result 375, Processing Time 0.023 seconds

Laser absorption spectroscopy of ternary gas mixture of He-Ne-Xe in External Electrode Fluorescent Lamp (EEFL) (레이저 흡수 분광법을 이용한 He-Ne-Xe 상종가스의 외부전곡 램프의 $1s_4$ 공명준위와 $1s_5$ 준안정준위의 제논 원자 밀도에 대한 연구)

  • Jeong, S.H.;Oh, P.Y.;Lee, J.H.;Cho, G.S.;Choi, E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.576-580
    • /
    • 2006
  • Mercury-free lamp, external electrode fluorescent lamp (EEFL) which includes the xenon gas, is now going on the research for the replacement of mercury lamp. The densities of excited xenon atom in the $1s_4$ resonance state and the $1s_5$ metastable state are investigated in the EEFL by a laser absorption spectroscopy under various gas pressures. We have measured the absorption signals for both $1s_4$ resonance and the $1s_5$ metastable state in the EEFL by varying the discharge currents for a given pressure. This basic absorption characteristic is very important for improvement of the VUV luminous efficiency of the EEFL as well as plasma display panel.

Analysis on Current Characteristics According to Injection Method and Driving Waveform in Electrophoretic-Type E-Paper Display (전기영동형 전자종이 디스플레이에서 전자잉크의 주입 방법 및 구동파형에 따른 전류 특성 분석)

  • Lee, Joo-Won;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.386-392
    • /
    • 2020
  • In this study, the drift current characteristics of charged particles are analyzed for panels fabricated by varying the waveform biasing of the active particle loading method (APLM), which is a method driven by the electrophoretic principle of loading charged particles into a cell of a barrier rib-type electronic paper. We prepare 3 panels using APLM and 1 panel without APLM. The waveform of APLM uses square wave and ramp wave, and the step voltage wave is applied to the driving voltage. The drift currents measured from the square wave and ramp wave with the same period applied by APLM are 4.872 µC and 5.464 µC, respectively, and the ramp wave is shown to be relatively advantageous for loading charged particles that have a large q/m. The time-current curve results confirm that the abrupt movement of charged particles is occurring. When the step form wave signal with a short time of 1s is first applied, initial large movement of the charged particles is confirmed to occur in all samples, which is understood as the effect of applying the voltage necessary to remove the imaging force. The results of this study are expected to improve the loading of charged particles into the electronic paper cell, driven by the electrophoretic principle and optimization of the driving conditions.

A study on a moving characteristics of charged particle in uniform electric field of Charged Particle type Display (대전입자형 디스플레이의 균등전계내 대전입자의 거동특성에 관한 연구)

  • Lee, Dong-Jin;Kim, Young-Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1186-1190
    • /
    • 2009
  • In this paper, we studied on a characteristic of movement of charged particle in equal electric field. In order to fabricate a panel, we used positive charged toner particles of black and negative one of yellow. Panel was biased rectangle pulse without any overshoot. Also, panel's optical characteristics with contrast ratio and viewing angle is measured with RT-200. Response time was measure by using incident laser and detective photodiode. The distribution of m/q of particles by driving in panel throughout the contrast ratio and response time. As a results, driving voltage, contrast ratio, and response time are decided by m/q of charged particles and when m/q of charged particles in panel have regular distribution, it is induce improvement driving characteristics.

Theoretical Background on Heavy Charged Particle Therapy and Proton Monte Carlo Simulation (중하전입자 치료의 이론적 배경과 양성자에 대한 몬테칼로 시뮬레이션)

  • 이정옥;이상공;김종일;정동혁;문성록;강정구
    • Progress in Medical Physics
    • /
    • v.8 no.1
    • /
    • pp.47-52
    • /
    • 1997
  • Simulations were performed using a Monte Carlo technique in order to show physical phenomena occurring when a heavy charged particle such as proton or alpha particle traverses the medium. It was confirmed that the sharp Bragg peak occurred deeper in the water with the increasing proton energy. It is found that the use of such a sharp Bragg peak due to heavy charged particles would be far superior to the case of the photon or electron, since the absorbed dose in the target tissues would be better localized, thereby minimizing the damage to the surrounding tissues.

  • PDF

Influence of sintering temperature of MgO pellet on the electro-optical characteristics of alternating current plasma display panel (AC-PDP)

  • Hong, Sung-Hee;Son, Chang-Gil;Jung, Seok;Kim, Jung-Seok;Paik, Jong-Hoo;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.400-403
    • /
    • 2008
  • We have investigated the electro-optical characteristics of AC-PDP with different MgO protective layers, which have been deposited by electron beam evaporation from various sintered pellets with different temperatures. We have measured the secondary electron emission coefficient ($\gamma$) by using the Gamma Focused Ion Beam ($\gamma$-FIB) system, the static margin, and the address delay time. Also, we have investigated photoluminescence (PL) characteristics for understanding the energy levels of MgO pellets and protective layers.

  • PDF

Control of Motion of Charged Micro-Particle by In-plane Field (수평전기장에 의해 대전된 입자의 운동제어)

  • Baik, In-Su;Jung, Byoung-Sun;Lim, Young-Jin;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.514-517
    • /
    • 2004
  • We have studied motion of micro-particle immersed in liquid crystal (LC) controlled by in-plane field, which is an important technology in the electro-phoretic display (EPD). In the EPD on and off states are decided by movement of these charged particles and response time is influenced by moving velocity of charged particles. In addition, the velocity can be controlled by intensity of applied voltage such that the higher the applied voltage, the faster velocity of particles become. In this study, we investigated particles's motion as functions of applied voltage, temperature of LC, rubbing direction,

  • PDF

Study on electrical charge distribution of aerosol using a Gerdien ion counter (Gerdien 이온측정기를 이용한 에어로졸의 하전 특성 분석에 관한 연구)

  • Joe, Yun-Haeng;Shim, Joonmok;Shin, Il-Kyoung;Yook, Se-Jin;Park, Hyun-Seol
    • Particle and aerosol research
    • /
    • v.14 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Since the motion of the charged particle strongly depends on its charge characteristics, information on charge distributions of target particles is one of the important variables in aerosol research. In this study, charged distribution of atomized NaCl particles were measured using a Gerdien type ion counter. Two kinds of particle charging conditions were used in this study. First, atomized NaCl particles were passed through an aerosol neutralizer to have a Boltzmann charge distribution, and then its charge distribution was measured. In this case, the portion of uncharged particles was compared with the portion obtained from the Boltzmann charge distribution for verifying the suggested experimental method. Second, same experiment was conducted without the aerosol neutralizer to measure the charge distribution of atomized and un-neutralized NaCl particles. In the conclusion, the portion of uncharged, negatively charged and positively charged particles were 19%, 62% and 20%, respectively, for neutralized particles. The atomized particles, which was generated without the aerosol neutralizer, also had almost a zero charge state, but the standard deviation in charge distribution was larger than that of neutralized particles. The test method proposed in this study is expected to be used in various aerosol research fields because it can obtain simple information on the particle charge characteristics more easily and quickly than the existing test methods.

A Study for Development and Characteristics of Electrostatic Eliminator for Charged Particles (대전된 분체의 정전기제거장치 개발 및 특성에 관한 연구)

  • Jung, Yong-Chul;Kim, Joon-Sam;Lee, Dong-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.22-30
    • /
    • 2006
  • On this study, we developed the electrostatic eliminator for charged particles in manufacturing process. The characteristics of the electrostatic eliminator were investigated, which is two kinds. The first one is Electrical Corona Discharged Type Ionizer. The second one is Photo Ionizer in using soft X-ray. From the experiment, we have obtained the following results. In case of Electrical Corona Discharged Ionizer, neutralization efficiency of charged particles were approximately saturated to 98% over 6.0kV, but as it is non-explosion proof, can not be used in flammable particle treatment process. While in case of photo Ionizer in using soft X-Ray, neutralization efficiency of charged particles were approximately 95%, and more its structure is explosion proof, could be used in flammable particle treatment process.

Planar Dynamics of the Electric Charaged Particles (전기전하의 평면계 동특성)

  • 강수준;박기순
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.621-628
    • /
    • 1999
  • The fundamental dynamic properties of the planar electric charged particle are investigated experimentally. The experiment is conducted using electric charged spheres(4 table tennis balls with conductive surfaces) suspended by insulating strings to cancel the gravitational force. The measurements of the equilibrium angles and the natural frequencies of oscillation agree well with the analytical predictions with some error, respectively.

  • PDF

In-line (α,n) source sampling methodology for monte carlo radiation transport simulations

  • Griesheimer, David P.;Pavlou, Andrew T.;Thompson, Jason T.;Holmes, Jesse C.;Zerkle, Michael L.;Caro, Edmund;Joo, Hansem
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1199-1210
    • /
    • 2017
  • A new in-line method for sampling neutrons emitted in (${\alpha}$,n) reactions based on alpha particle source information has been developed for continuous-energy Monte Carlo simulations. The new method uses a continuous-slowing-down model coupled with (${\alpha}$,n) cross section data to precompute the expected neutron yield over the alpha particle lifetime. This eliminates the complexity and computational cost associated with explicit charged particle transport. When combined with an integrated alpha particle decay source sampling capability, the proposed method provides an efficient and accurate method for sampling (${\alpha}$,n) neutrons based solely on nuclide inventories in the problem, with no additional user input required. Results from several example calculations show that the proposed method reproduces the (${\alpha}$,n) neutron yields and energy spectra from reference experiments and calculations.