• Title/Summary/Keyword: Charge-dipole

Search Result 85, Processing Time 0.028 seconds

Quantitative Structure-Activity Relationship (QSAR) Study by Use of Theoretical Descriptors : Quinolone and Naphthyridine

  • Lee Keun Woo;Kim Hojing
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1070-1079
    • /
    • 1994
  • Quantitative Structure-Activity Relationship (QSAR) studies are performed for the sets of 40 quinolones and 47 naphthyridines. Net charge, van der Waals volume, polarizability, and dipole moment are empolyed as theoretical descriptors(independent variables) to find the relationship between activity and physicochemical properties such as electrostatic effect, steric effect, and transferability. The results are analyzed by the regression and the factor analysis. It is found that for Gram-negative bacteria, the QSAR of quinolone and naphthyridine are substantially different: to describe the activity, the electrostatic effect is the most important for quinolone, and the steric effect and the transferability for naphthyridine.

Dielectric relaxation properties in the lead scandium niobate

  • Yeon Jung Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.227-232
    • /
    • 2023
  • In this study, complex admittance as a function of temperature and frequency was measured to analyze the important relaxation properties of lead scandium niobate, which is physically important, although it is not an environmentally friendly electrical and electronic material, including lead. Lead scandium niobate was synthesized by heat treating the solid oxide, and the conductance, susceptance and capacitance were measured as a function of temperature and frequency from the temperature dependence of the RLC circuit. The relaxation characteristics of lead scandium niobate were found to be affected by contributions such as grain size, grain boundary characteristics, space charge, and dipole arrangement. As the temperature rises, the maximum admittance and susceptance increase in one direction, but the resonance frequency decreases below the transition temperature but increases after the phase transition.

Adsorption Behavior of Monosubstituted-Halophenols by Amberlite XAD Resins (Amberlite XAD 수지에 대한 일치환 할로 페놀들의 흡착거동에 관한 연구)

  • Lee, Taek Hyeok;Lee, Dae Un
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.267-279
    • /
    • 1990
  • The adsorption mechanisms of phenols on XAD-2 and XAD-7 resins were studied by using the distribution coefficient(log Kd) measured in the optimum adsorption conditions. It was observed that the Langmuir adsorption isotherm, indicating a molecular size-dependent adsorption, was appropriate for characterizing the adsorption behaviors of phenols on XAD-2 and XAD-7 resins. The adsorption energies of phenols on XAD resins were calculated by Lennard-Jones potential equation. In the calculation of the adsorption energy, the molecular radii and dipole moments of the resins and phenols were calculated by their van der Waals volumes and Debye equation, respectively. The stacking factor (F) were determined from the radio of the equilibrium distance to the stacking distance of molecules. In order to explain the adsorption energy calculated from the stacking factor it was compared with the adsorption enthalpy for each of phenols which was experimentally determined by batch adsorption shake method. It was observed that the adsorption enthalpy of phenolate ions on the XAD resins was likely to be more seriously affected by dispersion interaction than by a dipole or a charge interaction.

  • PDF

Molecular Orbital Interpretation on the Inhibitory Effect of the Ni(Ⅱ) Complexes with Polyamines and Imidazole Derivatives (Polyamine류와 Imidazole 유도체가 배위된 Ni(Ⅱ) 착물의 저해 효과에 관한 분자궤도함수론적 해석)

  • Kim, Jung-Sung;Song, Young-Dae
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.2
    • /
    • pp.123-128
    • /
    • 2004
  • Quantum chemical quantities, enthalpy of formation(${\Delta}H_f$), HOMO and LUMO energy, and dipole moment(${\mu}_D$) were acquired by AM1, PM3, and ZINDO/1 methods for polyamines and imidazole derivatives. The investigation of the inhibitory activity on some Ni(II) complexes with polyamines and imidazole derivatives is performed by ZINDO/1 calculations. It was found that experimental inhibitory activity(IA) appeared when the value of net charge and enthalpy of formation were over 0.03 and -300 eV, respectively for Ni(II) complexes. These results showed that the Ni(II) complexes have exception on the following very unstable compounds: square pyramidal [Ni(dpt)(tn)])]$^{2+}$(dpt=3,3'-diaminodipropylamine)(tn=1,3-diaminopropane) and distorted tetrahedral [Ni(N-PropIm))$_2$(NCS))$_2$](N-PropIm=N-Propylimidazole).

Quenching of Ofloxacin and Flumequine Fluorescence by Divalent Transition Metal Cations

  • Park, Hyoung-Ryun;Oh, Chu-Ha;Lee, Hyeong-Chul;Choi, Jae-Gyu;Jung, Beung-In;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2002-2010
    • /
    • 2006
  • This study examined the quenching of ofloxacin (OFL) and flumequine (FLU) fluorescence by $Cuj^{2+}$, $Ni^{2+}$, $Co^{2+}$ and $Mn^{2+}$ in an aqueous solution. The change in the fluorescence intensity and lifetime was measured at various temperatures as a function of the quencher concentration. According to the Stern-Volmer plots, the fluorescence emission was quenched by both collisions (dynamic quenching) and complex formation (static quenching) with the same quencher but the effect of static quenching was larger than that of dynamic quenching. Large static and dynamic quenching constants for both OFL and FLU support significant ion-dipole and orbital-orbital interactions between fluorophore and quencher. For both molecules, the static and dynamic quenching constants by $Cu^{2+}$ were the largest among all the metal quenchers examined in this study. In addition, both the static and dynamic quenching mechanisms by $Cu^{2+}$ were somewhat different from the quenching caused by other metals. Between $Ni^{2+}$ and FLU, a different form of chemical interaction was observed compared with the interaction by other metals. The change in the absorption spectra as a result of the addition of a quencher provided information on static quenching. With all these metals, the static quenching constant of FLU was larger than those of OFL. The fluorescence of OFL was quite insensitive to both the dynamic and static quenching compared with FLU. This property of OFL can be explained by the twisted intramolecular charge transfer in the excited state.

Device Applications of Graphene and Their Challenges

  • Lee, B.H.;Hwang, H.J.;Yang, J.H.;Baek, E.J.;Kang, S.C.;Lee, Y.G.;Kang, C.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.114-114
    • /
    • 2012
  • Even though graphene was introduced with a great hope to replace silicon in future, small (or zero) band gap and poor stability have become major challenges in graphene electronics. Especially, rectification and amplification function which are the elemental functions of silicon device, is very difficult to implement without a bandgap. However, the graphene can still be used in many other device applications if the merits of graphene are creatively utilized. For example, graphene can be applied to almost any kind of substrate. Its conductivity can be varied in some degree using electric field, charge dipole, attached molecules, and many other ways. Recently, graphene stacked with ferroelectric materials or piezoelectric materials has been actively studied for various device applications. In this talk, various device applications of graphene using hybrid stack or novel device structure will be introduced and their prospect will be discussed.

  • PDF

Comparison of Three Modeling Methods for Identifying Unknown Magnetization of Ferromagnetic Thin Plate

  • Choi, Nak-Sun;Kim, Dong-Wook;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Hong-Joon;Kim, Dong-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.799-805
    • /
    • 2011
  • This study presents three different magnetization models for identifying unknown magnetization of the ferromagnetic thin plate of a ship. First, the forward problem should be solved to accurately predict outboard magnetic fields due to the magnetization distribution estimated at a certain time. To achieve this, three different modeling methods for representing remanent magnetization (i.e., magnetic charge method, magnetic dipole array method, and magnetic moment method) were utilized. Material sensitivity formulas containing the first-order gradient information of an objective function were then adopted for an efficient search of an optimum magnetization distribution on the hull. The validity of the proposed methods was tested with a scale model ship, and field signals predicted from the three different models were thoroughly investigated with reference to the experimental data.

A Study on the Behavior of Charged Particles of Silicone Rubbers (실리콘 고무의 하전입자의 거동에 관한 연구)

  • Lee, Sung-Ill
    • Elastomers and Composites
    • /
    • v.31 no.5
    • /
    • pp.335-340
    • /
    • 1996
  • In order to look into the internal structure and the properties in the silicone rubbers added reinforcing fillers; silica $additives(O{\sim}140phr)$, and to examine the behavior of charged particles, the properties of thermally stimulated current(TSC) and X-Ray diffraction are investigated, respectively. And then, from the TSC which are formed by applying the electric field of $2{\sim}5kV/mm$ to specimen at the temperature range from -150 to $260^{\circ}C$, the results are as follwing: In the case of non-filled specimen, four peaks of ${\delta},\;{\gamma},\;{\beta}\;and\;{\alpha}$ are obtained at the temperature of $-120^{\circ}C,\;-60^{\circ}C,\;20^{\circ}C\;and\;130^{\circ}C$, respectively and the case of filled specimen, three peaks of ${\delta},\;{\alpha}_2\;and\;{\alpha}_1$ are observed at the temperature of $-120^{\circ}C,\;80^{\circ}C\;and\;130^{\circ}C$, respectively. The origins of these peaks are that, the ${\delta}$ peak seems to the result from the contribution of side chain methyl radical, and the ${\gamma}$ peak from the depolarization of space charge polarization owing to be added impurity during manufacturing specimens, and the ${\beta}$ peak from the orientation of $Si-CH_3$ dipole, and the ${\alpha}_2$ near the temperature of $80^{\circ}C$ from hydroxyl in carboxylic radical, and finally, the ${\alpha}_1$ peak near the temperature of $130^{\circ}C$ from carboxyl acid that is formed by the thermal oxidation of high temperature.

  • PDF

Molecular-scale Structure of Pentacene at Functionalized Electronic Interfaces

  • Seo, Soon-Joo;Peng, Guowen;Mavrikakis, Manos;Ruther, Rose;Hamers, Robert J.;Evans, Paul G.;Kang, Hee-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.299-299
    • /
    • 2011
  • A dipolar interlayer can cause dramatic changes in the device characteristics of organic field-effect transistors (OFETs) or photovoltaics. A shift in the threshold voltage, for example, has been observed in an OFET where the organic semiconductor active layer is deposited on SiO2 modified with a dipolar monolayer. Dipolar molecules can similarly be used to change the current-voltage characteristics of organic-inorganic heterojunctions. We have conducted a series of experiments in which different molecular linkages are placed between a pentacene thin film and a silicon substrate. Interface modifications with different linkages allow us to predict and examine the nature of tunneling through pentacene on modified Si surfaces with different dipole moment. The molecular-scale structure and the tunneling properties of pentacene thin films on modified Si (001) with nitrobenzene and styrene were examined using scanning tunneling spectroscopy. Electronic interfaces using organic surface dipoles can be used to control the band lineups of a semiconductor at organic/inorganic interfaces. Our results can provide insights into the charge transport characteristics of organic thin films at electronic interfaces.

  • PDF

Mo Interpretation for the Substituent Effect of Stilbenes (스틸벤의 치환기 효과에 대한 분자궤도함수론적 해석)

  • Lim Sung-Mi;Park Byung-Kak;Lee Gab-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.38-43
    • /
    • 1992
  • The Hammett's substituent constants were interpreted for substituted stilbenes by HMO method. The appropriate quantum chemical indices are chosen as independent contribution of the inductive and the resonance effects for substituent constants. It has been found that theoretical values, ${\sigma}_p{^{th}}$, defined as sum of the net charge, self atom polarizability and difference in HOMO energy between substituted- and unsubstituted-stilbenes, correlated with experimental Hammett's substituent constants. The dipole moments were found to be correlated with differences in ${\sigma}_p{^{th}}$ between two substituents for disubstituted stilbenes. It has been also found that transition optical spectra, ${\lambda}_{max}$ of the substituted stilbenes depend on difference between the HOMO and the LUMO energy as expected.

  • PDF