• Title/Summary/Keyword: Charge transfer efficiency

Search Result 126, Processing Time 0.025 seconds

Role of Some Benzohydrazide Derivatives as Corrosion Inhibitors for Carbon Steel in HCl Solution

  • Fouda, A.S.;Mohamed, M.T.;Soltan, M.R.
    • Journal of Electrochemical Science and Technology
    • /
    • 제4권2호
    • /
    • pp.61-70
    • /
    • 2013
  • Corrosion inhibition of carbon steel in 2M HCl by some benzohydrazide derivatives (I-III) was studied using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques at $30^{\circ}C$. Polarization studies showed that all the investigated compounds are of mixed type inhibitors. Temperature studies revealed a decrease in efficiency with rise in temperature and corrosion activation energies increased in the presence of the hydrazide derivatives, probably implying that physical adsorption of cationic species may be responsible for the observed inhibition behavior. Electrochemical impedance studies showed that the presence of benzohydrazide derivatives decreases the double layer capacitance and increases the charge transfer resistance. The adsorption of these compounds on carbon steel surface was found to obey Temkin's adsorption isotherm. Synergistic effects increased the inhibition efficiency in the presence of halide additives namely KI and KBr. An inhibition mechanism was proposed in terms of strongly adsorption of inhibitor molecules on carbon steel surface.

Photoelectrochemical Properties of $TiO_2$ Electrodes Prepared Using Chemical Functionalized Binders

  • 송용환;김상기;양재창;박준호;김명수;구할본;박경희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.60.1-60.1
    • /
    • 2010
  • Chemically functionalized plant oils such as acrylated epoxidized soybean oil (AESO) and maleinized acrylated epoxidized soybean oil (MAESO) were used as new bio-based binders for $TiO_2$ electrodes of dye-sensitized solar cells (DSSC). More porous networks and larger porosities were fabricated on the $TiO_2$ films using plant oil binders due to the larger number of functionalities, in comparison with the film using polyethylene glycol (PEG). The charge-transfer resistance in the $TiO_2$ films was considerably shrunk due to the reduced impurity states. The short circuit photocurrent (Isc) and the open circuit photovoltage (Voc) of the cell using plant oil binders increased and the conversion efficiency improved significantly.

  • PDF

메타물질 Slab이 포함된 자계 결합 무선 전력 전송 시스템 효율 요소 분석 (Analysis of Elements for Efficiencies in Magnetically-Coupled Wireless Power Transfer System Using Metamaterial Slab)

  • 김건영;오택규;이범선
    • 한국전자파학회논문지
    • /
    • 제25권11호
    • /
    • pp.1128-1134
    • /
    • 2014
  • 본 논문에서는 자계 집속을 위해 메타 물질 slab을 포함하는 무선 전력 전송 성능을 공진기의 유효 Q-factor와 결합계수 예측식을 사용하여 요소적으로 분석하였다. 구체적으로, 메타 물질이 갖는 손실을 고려한 등가회로를 제안하고, 이를 이용하여 무선 전력 전송 시스템을 분석하였다. 손실이 없는 이상적 또는 저손실 메타 물질이 시스템에 삽입될 경우, 음의 투자율로 인한 자계 집속으로 인해 전송 효율이 대폭적으로 개선될 수 있다. 하지만 음의 투자율을 구현하기 위해 RR (Ring Resonator) 또는 SRR(Split Ring Resonator)로 메타 물질을 설계할 경우, 구조에 의한 손실로 효율 증가에 악영향을 끼치게 된다. 점 자하 소스가 아닌 실제의 루프 공진기에 손실이 있는 메타 물질을 사용하여 전송 효율을 향상시키기 위해서는, 메타 물질의 폭을 송수신 공진기 간 거리의 반 이하에서 최적화하여야 한다. 손실 탄제트가 0.001인 메타 물질이 두 공진체 사이에 삽입되었을 때는 그 폭과 두 공진기 사이의 거리의 비가 약 0.35일 때 전송 효율이 93%(메타물질 사용하지 않은 경우는 53 %)로 최대가 되었으며, 손실 탄젠트가 0.2(실제 손실과 유사)를 갖는 메타 물질이 삽입될 경우, 그 비가 약 0.25에서 약 61 %의 최대 전송효율을 나타내었다.

Permalloy를 이용한 효율적 인 무선 전력송신 기술 (An Effective Wireless Power Transfer Technique using Permalloy)

  • 황재영;정연호
    • 한국정보통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.678-683
    • /
    • 2010
  • 일반적으로 무선(비접촉식) 충전 장치는 Ferrosilicon 혹은 Ferrite 와 같은 코어를 사용하여 충전 효율을 높이고 있다. 본 논문에서는 무선충전 장치에 있어서 투자율이 더 높은 Permalloy를 이용하여 비접촉방식 충전 효율을 극대화한 무선 전력송신 기술을 제안한다. 기존의 Ferrosilicon 혹은 Ferrite 코어 재료보다 Permalloy를 이용할 경우 높은 효율의 투자율을 얻을 수 있으며 기존 비접촉식 충전 기술과의 비교 실험을 통해 더 높은 충전 효율과 무선 충전 거리를 확보할 수 있었다. 본 연구에서 개발된 무선 전력송신 기술은 향후 소형 휴대용 충전기기에 유용하게 적용 할 수 있을 것이다.

전기화학형 광전변환 셀의 고효율 전해질 제작에 관한 실험적 고찰 (Experimental Investigation on High Efficient Electrolytes of Electrochemical Photovoltaic Cells)

  • 김두환;한치환;성열문
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.100-104
    • /
    • 2011
  • In this work, an optimum condition of electrolytes preparation for photovoltaic cells application was investigated experimentally in terms of impedance and conversion efficiency of the cells. 3-methoxyppropionitrie and redox pairs with LiI and $I_2$ were used as stable solvents for fabrication of electrolyte. Efficiency comparison of the prepared cells carried out for various additives and ionic liquids. From the results, there was an optimum concentration (about 0.3 M) of ionic liquids for efficient cell fabrication. For case of electrolyte using single DMAp additive, the maximum conversion efficiency of the cell was 6.4%($V_{oc}$: 0.78V, $J_{sc}$: 14.4 mA/$cm^2$, ff: 0.57). For case of electrolyte using both DMAp and CEMim additives, the maximum conversion efficiency of the cell was 7.2%($V_{oc}$: 0.79V, $J_{sc}$: 16 mA/$cm^2$, ff: 0.57). From the result of electrochemical impedance measurement, both Z1 and Z3 values of binary additives-based cell decreased compared to those of single additive-based. This is due to the decreased in internal and charge transfer resistivities of the cells.

Evaluation of the Inhibitive Performance of Cyperus Conglomeratus Leaves Extract as a Green Corrosion Inhibitor on Mild Steel XC70 in Acid Medium

  • Belkis, Guessoum;Abdelkader, Hadj Seyd;Oumelkheir, Rahim
    • Corrosion Science and Technology
    • /
    • 제21권3호
    • /
    • pp.171-183
    • /
    • 2022
  • The performance and inhibitory action of the aqueous extract of Cyperus Conglomeratus's leaves against corrosion of XC70 steel in a 1M HCl acid medium are studied by the determination of the weight loss, the potentiodynamic polarization curves analysis, and electrochemical impedance measurements (electrochemical techniques). The corrosion inhibitory efficiency of XC70 steel increases with the increasing concentration of the green inhibitor, however, the corrosion rate of the steel decreases. Weight loss measurements show that the maximum percentage corrosion inhibition efficiency is approximately 61.86%, while the analysis of the mixed character polarization curves shows that the inhibitor could achieve an inhibition efficiency of 86.96%. The electrochemical impedance study confirmed that the value of the charge transfer resistance (Rct) increases and the value of the double layer capacity (Cdl) decreases with increasing concentration of the aqueous extract of Cyperus Conglomeratus's leaves, thus increasing the inhibition efficiency. The study showed that this aqueous extract acts by adsorption on the metal surface; this adsorption follows the Langmuir isotherm. This research work showed that Cyperus Conglomeratus leaves extract acts as an effective and eco-friendly inhibitor on mild steel in an acid medium.

Impedance Spectroscopy Studies on Corrosion Inhibition Behavior of Synthesized N,N’-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-Propandiimine for API-5L-X65 Steel in HCl Solution

  • Danaee, I.;Bahramipanah, N.;Moradi, S.;Nikmanesh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.153-160
    • /
    • 2016
  • The inhibition ability of N,N-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-Propandiimine (DHBP) as a schiff base against the corrosion of API-5L-X65 steel in 1 M HCl solution was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and scanning electron microscopy. Electrochemical impedance studies indicated that DHBP inhibited corrosion by blocking the active corrosion sites. The inhibition efficiency increased with increasing inhibitor concentrations. EIS data was analysed to equivalent circuit model and showed that the charge transfer resistance of steel increased with increasing inhibitor concentration whilst the double layer capacitance decreased. The adsorption of this compound obeyed the Langmuir adsorption isotherm. Gibbs free energy of adsorption was calculated and indicated that adsorption occurred through physical and spontaneous process. The corrosion inhibition mechanism was studied by potential of zero charge. Polarization studies indicated that DHBP retards both the cathodic and anodic reactions through adsorption on steel surface. Scanning electron microscopy was used to study the steel surface with and without inhibitor.

수중 빙 제조방식을 적용한 빙축열시스템의 축방냉 특성 실험 (Experiment of Characteristic on the Charge and Discharge of Cold in Ice Storage System Applied Ice Making Method In-Water)

  • 최인수;김재돌;윤정인
    • 설비공학논문집
    • /
    • 제14권1호
    • /
    • pp.31-37
    • /
    • 2002
  • This paper is concerned with the development of a new method for making and separating ice and saving floated ice by installing an evaporation plate at in-water within a storage tank. In a conventional harvest-type ice storage system, a tank saves ice by separating a formed ice from an installed evaporation plate, which is located above an ice storage tank as an ice storage system. A new harvest-type method shows very good heat transfer efficiency than a convectional method. It is because the evaporation panel is directly contacted with water in a storage tank. Also, at a conventional system a circulating pump, a circulating water distributor and a piping are installed, but these components are not necessary in a new method. In this study two kinds of ice storage systems are experimentally investigated to study the thermal characteristics of ice storage tanks. The results showed discharge of cold capacity of new type indicated the high values about 30~40% based on five time of drive, the temperature difference of inlet/outlet occurred the big range about $1.3^{\circ}C$. So, the new type which makes ice in water showed superiorly.

Blocking layer 제작에 따른 염료감응형 태양전지 출력특성 및 내부 임피던스 분석 (Analyses of the Output Characteristics and the Internal Impedance of Dye-sensitized Solar Cell According to the Fabrication of the Blocking Layer)

  • 김진경;손민규;김수경;홍나영;김병만;프라바카르;김희제
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.85-88
    • /
    • 2012
  • DSCs are based on a dye-adsorbed porous $TiO_2$ layer as a photo electrode [1]. Under the illumination, dye molecules are excited and electrons are produced. The injected electrons in the conduction band of $TiO_2$ may recombine with the electrolyte. To obtain high performance DSCs, it is essential to retard the recombination. The charge recombination can be reduced by forming core-shell structure. In this work, we investigated the core-shell structure with $Al_2O_3$ and MgO coating layer on the porous $TiO_2$ layer. We confirmed the photovoltaic properties by I-V characteristics. The current and the efficiency was improved. In addition to, Through decrease in the width of EIS arc, which is the sum of the interfacial charge transfer resistances of both electrodes, we can be indicated that the block effect.

MoS2의 형상변조를 통한 광전기화학 성능 촉진 (Promoting Photoelectrochemical Performance Through the Modulation of MoS2 Morphology)

  • 서동범;김의태
    • 한국재료학회지
    • /
    • 제32권1호
    • /
    • pp.30-35
    • /
    • 2022
  • The development of advanced materials to improve the efficiency of photoelectrochemical (PEC) water splitting paves the way for widespread renewable energy technologies. Efficient photoanodes with strong absorbance in visible light increases the effectiveness of solar energy conversion systems. MoS2 in a two-dimensional semiconductor that has excellent absorption performance in visible light and high catalytic activity, showing considerable potential as an agent of PEC water splitting. In this study, we successfully modulated the MoS2 morphology on indium tin oxide substrate by using the metalorganic chemical vapor deposition method, and applied the PEC application. The PEC photocurrent of the vertically grown MoS2 nanosheet structure significantly increased relative to that of MoS2 nanoparticles because of the efficient transfer of charge carriers and high-density active sites. The enhanced photocurrent was attributed to the efficient charge separation and improved light absorption of the MoS2 nanosheet structure. Meanwhile, the photocurrent property of thick nanosheets decreased because of the limit imposed by the diffusion lengths of carriers. This study proposes a valuable photoelectrode design with suitable nanosheet morphology for efficient PEC water splitting.