• Title/Summary/Keyword: Charge controller

Search Result 147, Processing Time 0.021 seconds

New Developments for Mosaic CCDs

  • Han, Wonyong
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.10a
    • /
    • pp.21-21
    • /
    • 1993
  • The imaging areas of currently available optical detectors are relatively small to cope with large image areas such as telescope focal Planes. One Possibility to obtain large detection areas is to assemble mosaics of Charge Coupled Devices(CCDs) and drive them simultaneously. Parallel driving of many CCDs together rules out the possibility of individual tuning; however such optimisation is very important when the ultimate low light level performance is required particularly for new devices. In this work, a new concept has been developed for an entirely novel approach where the drive waveforms are multiplexed and interleaved. This simultaneously reduces the number of leadout connections and permits individual optimisation efficiently. The controller has been designed to include one electronic of component produced by CAD software where most of the digital circuits are integrated to minimise the component count and improve the efficiency of the system greatly. The software has an open architecture to permit convenient modificationl by the user to fit their specific purposes. The desire of controller allows great flexibility of system parameters by the softwa re, specifically for the compatibility to deal with any number of mixed CCDs and in any format within the practical limit. The system has been integrated to test the performance and the result is discussed for readout noise, system linearity and cross-talk between the CCDs. The system developed in this work can be applicable not only for astro nomical observation with a telescope but also in other related fields for low light level detection systems such as spectroscopic application, remote sensing and X-ray detecti13n systems with large sensing areas and high resolution.

  • PDF

NeW Output Voltage Control Scheme Based on SoC Variation of BESS Applicable for Stand-alone DC Microgrid (독립형 DC 마이크로그리드에 적용 가능한 BESS의 SoC를 기반으로 한 새로운 출력전압 제어기법)

  • Yu, Seung-Yeong;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1176-1185
    • /
    • 2016
  • This paper proposes a new output voltage control scheme based on the SoC variation of the battery energy storage system (BESS) applicable for the stand-alone DC microgrid. The proposed control scheme provides relatively lower variation of the DC grid voltage than the conventional droop method. The performance of proposed control scheme was verified through computer simulations for a typical stand-alone DC microgrid which consists of BESS, photo-voltaic (PV) panel, engine generator (EG), and DC load. A scaled hardware prototype for the stand-alone DC microgrid with DSP controller was set up in the lab, and the proposed control algorithm was installed in the DSP controller. The test results were compared with the simulation results for performance verification and actual system implementation.

Regulated Peak Power Tracking (RPPT) System Using Parallel Converter Topologies

  • Ali, Muhammad Saqib;Bae, Hyun-Su;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.870-879
    • /
    • 2011
  • Regulated peak power tracking (RPPT) systems such as the series structure and the series-parallel structures are commonly used in satellite space power systems. However, these structures process the solar array power or the battery power to the load through two cascaded regulators during one orbit cycle, which reduces the energy transfer efficiency. Also the battery charging time is increased due to placement of converter between the battery and the solar array. In this paper a parallel structure has been proposed which can improve the energy transfer efficiency and the battery charging time for satellite space power RPPT systems. An analogue controller is used to control all of the required functions, such as load voltage regulation and solar array stabilization with maximum power point tracking (MPPT). In order to compare the system efficiency and the battery charging efficiency of the proposed structure with those of a series (conventional) structure and a simplified series-parallel structure, simulations are performed and the results are analyzed using a loss analysis model. The proposed structure charges the battery more quickly when compared to the other two structures. Also the efficiency of the proposed structure has been improved under different modes of solar array operation when compared with the other two structures. To verify the system, experiments are carried out under different modes of solar array operation, including PPT charge, battery discharge, and eclipse and trickle charge.

A Study on the Optimum Design for Preventing Propelling Charge to Military Ammunition Vehicle (탄약운반장갑차의 장약 파손 방지를 위한 최적설계에 관한 연구)

  • Noh, Sang Wan;Kim, Sung Hoon;Park, Young Min;Kim, Byung Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.494-500
    • /
    • 2019
  • The purpose of this study was to determine a method to prevent damage during the transfer of loading through optimal design of loading transfer software for an ammunition-carrying armored vehicle. Typically, an ammunition carrier armored car is equipped with an automated charge transfer system. The load is intermittently damaged during the loading of the cargo, and this needs to be improved. The following improvements and verification tests were carried out. As impact speed increased, the loading speed was reduced 60%, and a special fixture utilizing a force gauge was developed and tested. If the maximum current of 11A for the servo controller is output when the load of the conveyor is generated by interference inside the loading tube, there is a possibility of charge breakage. If the maximum current is low, the load cannot be loaded. In the loading test for the ammunition carrier armored car with the actual charge, the improved design was found to be valid, as the load was not damaged and occurred nominally.

Hierarchical Control Scheme for Three-Port Multidirectional DC-DC Converters in Bipolar DC Microgrids

  • Ahmadi, Taha;Hamzeh, Mohsen;Rokrok, Esmaeel
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1595-1607
    • /
    • 2018
  • In this paper, a hierarchical control strategy is introduced to control a new three-port multidirectional DC-DC converter for integrating an energy storage system (ESS) to a bipolar DC microgrid (BPDCMG). The proposed converter provides a voltage-balancing function for the BPDCMG and adjusts the states of charge (SoC) of the ESS. Previous studies tend to balance the voltage of the BPDCMG buses with active sources or by transferring power from one bus to another. Furthermore, the batteries available in BPDCMGs were charged equally by both buses. However, this power sharing method does not guarantee efficient operation of the whole system. In order to achieve a higher efficiency and lower energy losses, a triple-layer hierarchical control strategy, including a primary droop controller, a secondary voltage restoration controller and a tertiary optimization controller are proposed. Thanks to the multi-functional operation of the proposed converter, its conversion stages are reduced. Furthermore, the efficiency and weight of the system are both improved. Therefore, this converter has a significant capability to be used in portable BPDCMGs such as electric DC ships. The converter modes are analyzed and small-signal models of the converter are extracted. Comprehensive simulation studies are carried out and a BPDCMG laboratory setup is implemented in order to validate the effectiveness of the proposed converter and its hierarchical control strategy. Simulation and experimental results show that using the proposed converter mitigates voltage imbalances. As a result, the system efficiency is improved by using the hierarchical optimal power flow control.

Feedforward EGR Control of a Passenger Car Diesel Engine Equipped with a DC Motor Type EGR Valve (DC 모터방식 EGR 밸브를 적용한 승용디젤엔진의 앞먹임 공기량 제어에 관한 연구)

  • Oh, Byoung-Gl;Lee, Min-Kwang;Park, Yeong-Seop;Lee, Kang-Yoon;SunWoo, Myoung-Ho;Nam, Ki-Hoon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.14-21
    • /
    • 2011
  • In diesel engines, accurate EGR control is important due to its effect on nitrogen oxide and particulate matter emissions. Conventional EGR control system comprises a PI feedback controller for tracking target air mass flow and a feedforward controller for fast response. Physically, the EGR flow is affected by EGR valve lift and thermodynamic properties of the EGR path, such as pressures and temperatures. However, the conventional feedforward control output is indirectly derived from engine operating conditions, such as engine rotational speed and fuel injection quantity. Accordingly, the conventional feedforward control action counteracts the feedback controller in certain operating conditions. In order to improve this disadvantage, in this study, we proposed feedforward EGR control algorithm based on a physical model of the EGR system. The proposed EGR control strategy was validated with a 3.0 liter common rail direct injection diesel engine equipped with a DC motor type EGR valve.

A Control Algorithm Suitable for High-speed Response Battery Charging System for Elevator Car (승강기 Car용 고속응성 배터리 충전시스템에 적합한 제어알고리즘)

  • Lee, Jung-Hwan;Hwangbo, Chan;Park, Sung-Jun;Park, Seong-Mi;Ko, Jae-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1071-1081
    • /
    • 2022
  • As the demand for high-rise buildings increases, the demand for high-speed elevators is also increasing. In order to make a high-speed elevator, a method is needed to reduce the weight of the elevator's components, which is a constraint on the increase in speed. As a measure to reduce the weight, it is possible to remove the traveling cable for power and signal supply. Since the weight of the traveling cable varies depending on the position of the carriage, it is difficult to compensate the weight using the counter weight. The power supply is a structure in which a brush-rail type power input terminal is installed in the elevator hoistway to receive power in a contact-type manner while the carriage is moving. If a small-capacity ESS is installed in a passenger car, power can be supplied uninterruptedly inside the passenger car. A small-capacity ESS charging system to be applied to such an elevator system is required to perform several functions. First, the passenger Car must be able to charge as much as possible even during high-speed operation. A control algorithm with high responsiveness is required because charging starts and ends repeatedly by the partially installed input power stage. In addition, if the input-side line impedance is large due to the structure of the system and the response characteristic is increased, the stability of the system may be lowered. Accordingly, in this paper, we propose a control algorithm that has a stable steady-state output while having a fast response in a transient state. To verify the proposed control algorithm, simulation was conducted using PSIM, and the performance of the controller was verified by manufacturing a prototype buck conveter charger.

Battery Controller Design of Stand-alone PV System using MPPT (MPPT를 적용한 독립형 PV용 배터리 제어기 설계)

  • Im, JH;Baek, SH;Jang, IH;Mon, EA;Choi, YO;Cho, GB;Baek, HL
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.267-268
    • /
    • 2011
  • In order to increase the efficiency of the PV solar can get maximum power output from a control is up. But MPPT request Converter since Solar module always work MPP about out condition. This paper study of 170W stand-alone PV MPPT system for charge and discharge control system of the battery. The proposed system is a way of Flyback converters, and controls the algorithm used P&O control method and ATmega128.

  • PDF

Implementation of a CAN Based Real-Time Simulator for FCHEV (하이브리드 연료전지 자동차의 CAN기반 실시간 시뮬레이터 구현)

  • Shim, Seong-Yong;Lee, Nam-Su;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.410-413
    • /
    • 2004
  • In this paper, a simulator system for Fuel Cell Hybrid Electric Vehicles(FCHEV) is implemented using DSP boards with CAN bus. The subsystems of a FCHEV i.e., the fuel cell system, the battery system, the vehicle dynamics with the transmission mechanism are coded into 3 DSP boards. The power distribution control algorithm and battery SOC control are also coded into a DSP board. The real-time monitoring program is also developed to examine the control performance of power control and SOC control algorithms.

  • PDF

CONVERTER DESIGN AND CONTROL OF PIEZOELECTRIC ACTUATORS IN SLIDING MODE OPERATION

  • Palis F.;Heller D.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.785-789
    • /
    • 2001
  • Piezoelectric actuators are characterized by non-linear dynamics and high frequency oscillations of the piezocrystal. Both properties have to be taken into consideration when optimizing real time systems. Taking benefit of the almost linear behaviour between charge and strain, current source fed piezoelectric actuators are given preference for high dynamic applications. Here special emphasis is put on current sources for multi-actuator systems and the controller design for optimal system integration of the actuator. It is shown that sliding mode operation of the converter system offers good possibilities to guaranty high accuracy and dynamics of the actuators system. The presented multi-actuator system is used for positioning and vibration damping in flexible mechanical systems.

  • PDF