• Title/Summary/Keyword: Charge carrier

Search Result 351, Processing Time 0.032 seconds

Bile Acid Inhibition of N-type Calcium Channel Currents from Sympathetic Ganglion Neurons

  • Lee, Hye-Kyung;Lee, Kyoung-Hwa;Cho, Eui-Sic
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.25-30
    • /
    • 2012
  • Under some pathological conditions as bile flow obstruction or liver diseases with the enterohepatic circulation being disrupted, regurgitation of bile acids into the systemic circulation occurs and the plasma level of bile acids increases. Bile acids in circulation may affect the nervous system. We examined this possibility by studying the effects of bile acids on gating of neuronal (N)-type $Ca^{2+}$ channel that is essential for neurotransmitter release at synapses of the peripheral and central nervous system. N-type $Ca^{2+}$ channel currents were recorded from bullfrog sympathetic neuron under a cell-attached mode using 100 mM $Ba^{2+}$ as a charge carrier. Cholic acid (CA, $10^{-6}M$) that is relatively hydrophilic thus less cytotoxic was included in the pipette solution. CA suppressed the open probability of N-type $Ca^{2+}$ channel, which appeared to be due to an increase in (no activity) sweeps. For example, the proportion of sweep in the presence of CA was ~40% at +40 mV as compared with ~8% in the control recorded without CA. Other single channel properties including slope conductance, single channel current amplitude, open and shut times were not significantly affected by CA being present. The results suggest that CA could modulate N-type $Ca^{2+}$ channel gating at a concentration as low as $10^{-6}M$. Bile acids have been shown to activate nonselective cation conductance and depolarize the cell membrane. Under pathological conditions with increased circulating bile acids, CA suppression of N-type $Ca^{2+}$ channel function may be beneficial against overexcitation of the synapses.

The Effect of Carbon Monoxide on L-type Calcium Channel Currents in Human Intestinal Smooth Muscle Cells

  • Lim, In-Ja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.357-362
    • /
    • 2003
  • Carbon monoxide (CO) is low molecular weight oxide gas that is endogenously produced under physiological conditions and interacts with another gas, nitric oxide (NO), to act as a gastrointestinal messenger. The aim of this study was to determine the effects of exogenous CO on L-type calcium channel currents of human jejunal circular smooth muscle cells. Cells were voltage clamped with 10 mM barium ($Ba^{2+}$) as the charge carrier, and CO was directly applied into the bath to avoid perfusion induced effects on the recorded currents. 0.2% CO was increased barium current ($I_{Ba}$) by $15{\pm}2$% ($mean{\pm}S.E.$, p<0.01, n=11) in the cells. To determine if the effects of CO on barium current were mediated through the cGMP pathway, cells were pretreated with 1-H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, $10{mu}M$), a soluble guanylyl cyclase inhibitor, and exogenous CO (0.2%) had no effect on barium currents in the presence of ODQ ($2{\pm}1$% increase, n=6, p>0.05). CO mediates inhibitory neurotransmission through the nitric oxide pathway. Therefore, to determine if the effects of CO on L-calcium channels were also mediated through NO, cells were incubated with $N^G-nitro-L-arginine$ (L-NNA, 1 mM), a nitric oxide synthase inhibitor. After L-NNA pretreatment, 0.2 % CO did not increase barium current ($4{\pm}2$% increase, n=6, p>0.05). NO donor, SNAP ($20{\mu}M$) increased barium current by $13{\pm}2$% (n=6, p<0.05) in human jejunal smooth muscle cells. These data suggest that CO activates L-type calcium channels through NO/cGMP dependant mechanism.

Visible photochromic energy shift of $WO_{3}$/CdS thin films fabricated by thermal evaporation method (진공증착 법으로 제작한 $WO_{3}$/CdS 박막의 가시광 광 변색의 에너지 전환)

  • Kim, Keun-Mook;Kim, Myung-Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.29-34
    • /
    • 2005
  • Tungsten oxide($WO_{3}$) is suitable to materials for photochromic window in the visible region. The resistivities of CdS, $WO_{3}$, and $WO_{3}$/CdS films prepared by thermal evaporation method were $4.61\times 10\^{3}$, $7.59\times10^{3}$, and $6.29\times10^{3}$ $\omega$ cm. And x-ray diffraction patterns of CdS, $WO_{3}$/CdS films showed a preferred orientation of hexagonal(002), and the monoclinic(020) structure, respectively. The optical transmission were measured that the cut-on wavelength were 510nm, 380nm for CdS and $WO_{3}$ films respectively, and the transmission spectrum of $WO_{3}$/CdS was shifted into the visible region. Photoluminescence(PL) spectra showed the two peaks at 2.8 eV and 3.2 eV for the as-grown sample($WO_{3}$/CdS ($500{\AA}$), but the other sample($WO_{3}$/CdS ($1000{\AA}$)) had a peak energy value of 2.8 eV. The photochromism of $WO_{3}$/CdS films showed that the excitation of electron-hole pairs and subsequent coloration is shifted into visible-light range. And the spectral behavior of coloration turned out to be proportional to the excited electron-hole pairs creation rate of CdS film. This result is interpreted in terms of charge carrier injection from the CdS-layer into the $WO_{3}$ films. We found a value of about 2.8 eV of $WO_{3}$/CdS film which is somewhat higher than peak energy of 2.54 eV using CBD prepared by Bechinger et. al.

  • PDF

A Study on the Electrical Characteristic Analysis of c-Si Solar Cell Diodes

  • Choi, Pyung-Ho;Kim, Hyo-Jung;Baek, Do-Hyun;Choi, Byoung-Deog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • A study on the electrical characteristic analysis of solar cell diodes under experimental conditions of varying temperature and frequency has been conducted. From the current-voltage (I-V) measurements, at the room temperature, we obtained the ideality factor (n) for Space Charge Region (SCR) and Quasi-Neutral Region (QNR) of 3.02 and 1.76, respectively. Characteristics showed that the value of n (at SCR) decreases with rising temperature and n (at QNR) increases with the same conditions. These are due to not only the sharply increased SCR current flow but the activated carrier recombination in the bulk region caused by defects such as contamination, dangling bonds. In addition, from the I-V measurements implemented to confirm the junction uniformity of cells, the average current dispersion was 40.87% and 10.59% at the region of SCR and QNR, respectively. These phenomena were caused by the pyramidal textured junction structure formed to improve the light absorption on the device's front surface, and these affect to the total diode current flow. These defect and textured junction structure will be causes that solar cell diodes have non-ideal electrical characteristics compared with general p-n junction diodes. Also, through the capacitance-voltage (C-V) measurements under the frequency of 180 kHz, we confirmed that the value of built-in potential is 0.63 V.

Relative Bioavailability of Coenzyme Q10 in Emulsion and Liposome Formulations

  • Choi, Chee-Ho;Kim, Si-Hun;Shanmugam, Srinivasan;Baskaran, Rengarajan;Park, Jeong-Sook;Yong, Chul-Soon;Choi, Han-Gon;Yoo, Bong-Kyu;Han, Kun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.99-105
    • /
    • 2010
  • The purpose of this study was to evaluate relative bioavailability of the coenzyme Q10 (CoQ10) in emulsion and three liposome formulations after a single oral administration (60 mg/kg) into rats. Emulsion formulation of CoQ10 was prepared by conventional method using Phospholipon 85G as an emulsifier, and three liposome formulations (neutral, anionic, and cationic) of CoQ10 were prepared by traditional lipid film hydration technique using Phospholipon 85G, cholesterol, and charge carrier lipids (1,2-dioleoyl-3-trimethylammonium-propane chloride salt for cationic liposome and 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt for anionic liposome). Mean particle size of all CoQ10-loaded liposome was less than a micron, and size distribution of the liposome population was homogeneous. Bioavailability of CoQ10 in emulsion was 1.5 to 2.6-fold greater than liposome formulations in terms of $AUC_{0-24\;h}$. $T_{max}$ was 3 h when administered as emulsion while it was greater than 6 h in liposome formulations. Notably, it was approximately 8 h in cationic liposome. $C_{max}$ was highest in emulsion and was significantly decreased when administered as liposome. Charged liposome showed even lower $C_{max}$ than neutral liposome, especially in cationic liposome. In conclusion, therefore, it is suggested that clinicians and patients consider bioavailability issue a primary concern when choosing a CoQ10 product, especially when very high plasma level is required such as in the treatment of heart failure and Parkinson's disease.

Development of Polymeric Nanopaclitaxel and Comparison with Free Paclitaxel for Effects on Cell Proliferation of MCF-7 and B16F0 Carcinoma Cells

  • Yadav, Deepak;Anwar, Mohammad Faiyaz;Garg, Veena;Kardam, Hemant;Beg, Mohd Nadeem;Suri, Suruchi;Gaur, Sikha;Asif, Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2335-2340
    • /
    • 2014
  • Paclitaxel is hydrophobic in nature and is recognized as a highly toxic anticancer drug, showing adverse effects in normal body sites. In this study, we developed a polymeric nano drug carrier for safe delivery of the paclitaxel to the cancer that releases the drug in a sustained manner and reduces side effects. N-isopropylacrylamide/vinyl pyrrolidone (NIPAAm/VP) nanoparticles were synthesized by radical polymerization. Physicochemical characterization of the polymeric nanoparticles was conducted using dynamic light scattering, transmission electron microscopy, scanning electron microscopy and nuclear magnetic resonance, which confirmedpolymerization of formulated nanoparticles. Drug release was assessed using a spectrophotometer and cell viability assays were carried out on the MCF-7 breast cancer and B16F0 skin cancer cell lines. NIPAAm/VP nanoparticles demonstrated a size distribution in the 65-108 nm range and surface charge measured -15.4 mV. SEM showed the nanoparticles to be spherical in shape with a slow drug release of ~70% in PBS at $38^{\circ}C$ over 96 h. Drug loaded nanoparticles were associated with increased viability of MCF-7 and B16F0 cells in comparison to free paclitaxel. Nano loaded paclitaxel shows high therapeutic efficiency by sustained release action for the longer period of time, i increasing its efficacy and biocompatibility for human cancer therapy. Therefore, paclitaxel loaded (NIPAAm/VP) nanoparticles may provide opportunities to expand delivery of the drug for clinical selection.

Enhanced Electrical Properties of Light-emitting Electrochemical Cells Based on PEDOT:PSS incorporated Ruthenium(II) Complex as a Light-emitting layer

  • Gang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyeon;Jo, Yeong-Ran;Hwang, Jong-Won;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.139-139
    • /
    • 2010
  • Ionic Transition Metal Complex based (iTMC) Light-emitting electrochemical cells (LEECs) have been drawn attention for cheap and easy-to-fabricate light-emitting device. LEEC is one of the promising candidate for next generation display and solid-state lighting applications which can cover the defects of current commercial OLEDs like complicated fabrication process and strong work-function dependent sturucture. We have investigated the performance characteristics of LEECs based on poly (3, 4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)-incorporated transition metal complex, which is tris(2, 2'-bipyridyl)ruthenium(II) hexafluorophosphate in this study. There are advantages using conductive polymer-incorporated luminous layer to prevent light disturbance and absorbance while light-emitting process between light-emitting layer and transparent electrode like ITO. The devices were fabricated as sandwiched structure and light-emitting layer was deposited approximately 40nm thickness by spin coating and aluminum electrode was deposited using thermal evaporation process under the vacuum condition (10-3Pa). Current density and light intensity were measured using optical spectrometer, and surface morphology changes of the luminous layer were observed using XRD and AFM varying contents of PEDOT:PSS in the Ruthenium(II) complex solution. To observe enhanced ionic conductivity of PEDOT:PSS and luminous layer, space-charge-limited-currents model was introduced and it showed that the performances and stability of LEECs were improved. Main discussions are the followings. First, relationship between film thickness and performance characteristics of device was considered. Secondly, light-emitting behavior when PEDOT:PSS layer on the ITO, as a buffer, was introduced to iTMC LEECs. Finally, electrical properties including carrier mobility, current density-voltage, light intensity-voltage, response time and turn-on voltages were investigated.

  • PDF

UV Photo Response Driven by Pd Nano Particles on LaAlO3/SrTiO3 Using Ambient Control Kelvin Probe Force Microscopy

  • Kim, Haeri;Chan, Ngai Yui;Dai, Jiyan;Kim, Dong-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.207.1-207.1
    • /
    • 2014
  • High-mobility and two dimensional conduction at the interface between two band insulators, LaAlO3 (LAO) and SrTiO3 (STO), have attracted considerable research interest for both applications and fundamental understanding. Several groups have reported the photoconductivity of LAO/STO, which give us lots of potential development of optoelectronic applications using the oxide interface. Recently, a giant photo response of Pd nano particles/LAO/STO is observed in UV illumination compared with LAO/STO sample. These phenomena have been suggested that the correlation between the interface and the surface states significantly affect local charge modification and resulting electrical transport. Water and gas adsorption/desorption can alter the band alignment and surface workfunction. Therefore, characterizing and manipulating the electric charges in these materials (electrons and ions) are crucial for investigating the physics of metal oxide. Proposed mechanism do not well explain the experimental data in various ambient and there has been no quantitative work to confirm these mechanism. Here, we have investigated UV photo response in various ambient by performing transport and Kelvin probe force microscopy measurements simultaneously. We found that Pd nano particles on LAO can form Schottky contact, it cause interface carrier density and characteristics of persistence photo conductance depending on gas environment. Our studies will help to improve our understanding on the intriguing physical properties providing an important role in many enhanced light sensing and gas sensing applications as a catalytic material in different kinds of metal oxide systems.

  • PDF

Synthesis and Characterization of Electroluminescent Conjugated Polymers Containing Sulfone Group in the Main Chain (주사슬에 설폰기를 함유하는 전기발광 공액 고분자의 합성과 특성분석)

  • Kang Min Sung;Jung Ho Kuk;Park Soo Young;Kim Jang-Joo
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.357-362
    • /
    • 2005
  • As a new class of electroluminescent (EL) polymers, PPV-based polymers containing sulfone group in the main chain were synthesized through Witting polymerization reaction to control n-conjugation length and energy levels for predictable light emission and enhanced device performance. These EL polymers showed good solubility in common organic solvents and high thermal stability with initial decomposition temperature of ca. $400^{circ}$ and glass transition temperature around $200^{circ}C$ Emission colors were tuned from green to deep blue by reducing ${\pi}$-conjugated length between sulfone groups. It was also noted from the cyclic voltammetry (CV) measurements and semiempirical calculations that sulfone group with high electron affinity effectively lowered HOMO-LUMO energy levels to enhance EL device performance.

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF