• Title/Summary/Keyword: Charge carrier

Search Result 351, Processing Time 0.029 seconds

Effects of Aroma Hand Massage On Sleep, Depression and Quality of Life in the Institutionalized Elderly Women (아로마 손 마사지가 시설노인 여성의 수면, 우울 및 삶의 질에 미치는 효과)

  • Seo, Soon-Yi;Chang, So-Young
    • Women's Health Nursing
    • /
    • v.15 no.4
    • /
    • pp.372-380
    • /
    • 2009
  • Purpose: The purpose of this study was to examine the effects of aroma hand massage on Sleep, depression and quality of life in the institutionalized elderly women. Methods: This study was a nonequivalent control group pretest-posttest design. The data was collected from June 23 to August 10 of 2009. Fifty - Six elderly women were divided into two groups, 27 institutionalized elderly women for the experimental group and 29 institutionalized elderly women for the control group. As for experimental treatment, the experimental group went through aroma hand massage with blended oil-a mixture of Lavender, Bergamot, Chamomile Roman in the ratio of 1 : 1 : 1, which was diluted 2.0% with jojoba carrier oil 20mL-on each hand for 5 minutes, three times a week during two weeks. Control group went non-treatment. Results: The aroma hand massage experimental group showed more significant differences in the charge of sleep score (t=3.83, p=.00) and depression (t=-3.54, p=.00). Conclusion: Aroma hand massage had a positive effect on sleep and depression in Institutionalized elderly women.

Superconductivity of infinite layer cuprate

  • Lee, Sung-Ik;Jung, Chang-Wook;Kim, Ji-Yeon;Kim, Heon-Jung;Park, Min-Seok
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.1-1
    • /
    • 2000
  • The infinite layer compound $ACuO_2$, (A-Alkaline earth) consists of infinite stacking of $CuO_2$ planes separated only by alkaline earth ions. This compound attracted much attention because it contains only key ingredient of all cuprate high temperature superconductor; $CuO_2$ plane with controllable carrier concentration without charge reservoir block. High pressure synthesis method has been found to be preferable for this system due to its ability of doping various lanthanide ion into A site with larger superconducting volume fraction. But rigorous study on this rudimentary compound has been hindered by insufficient quality of sample. Especially superconductlng volume fraction was often too small to identify its origin. In this presentation, we report high pressure synthesis of $Sr_{0.9}Ln_{0.1}CuO_2$ (Ln=La, Sm). By controlling the heating temperature precisely during high pressure synthesis we could have superconductors with quite high superconducting volume fraction for this compound. The magnetic properties of the graln aligned samples show very different behavior compared to the cuprate high temperature superconductors. Details will be discussed.

  • PDF

Electronic Structure of Organic/organic Interface Depending on Heteroepitaxial Growth Using Templating Layer

  • Lim, Hee Seon;Kim, Sehun;Kim, Jeong Won
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.351-356
    • /
    • 2014
  • The electronic structure at organic-organic interface gives essential information on device performance such as charge transport and mobility. Especially, the molecular orientation of organic material can affect the electronic structure at interface and ultimately the device performance in organic photovoltaics. The molecular orientation is examined by the change in ionization potential (IP) for metal phthalocyanines (MPc, M=Zn, Cu)/fullerene ($C_{60}$) interfaces on ITO by adding the CuI templating layer through ultraviolet photoelectron spectroscopy measurement. On CuPc/$C_{60}$ bilayer, the addition of CuI templating layer represents the noticeable change in IP, while it hardly affects the electronic structure of ZnPc/$C_{60}$ bilayer. The CuPc molecules on CuI represent relatively lying down orientation with intermolecular ${\pi}-{\pi}$ overlap being aligned in vertical direction. Consequently, in organic photovoltaics consisting of CuPc and $C_{60}$ as donor and acceptor, respectively, the carrier transport along the direction is enhanced by the insertion of CuI templaing layer. In addition, optical absorption in CuPc molecules is increased due to aligned transition matrix elements. Overall the lying down orientation of CuPc on CuI will improve photovoltaic efficiency.

Single Crystalline ${\beta}$-Na0.33V2O5 Nanowires Based Supercapacitor

  • Trang, Nguyen Thi Hong;Shakir, Imran;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.587-587
    • /
    • 2012
  • Supercapacitors, which can deliver significant energy with high power density, have attracted a lot of attention due to their potential application in energy storage. Among various oxide materials, sodium vanadate has been recognized as one of the most promising electrode materials because of high electrical conductivity. In addition, larger layer spacing of ${\beta}$-Na0.33V2O5 compared to V2O5 makes easier Li+ insertion. Moreover, ${\beta}$-Na0.33V2O5 has a tunnel like structure along b axis with 3 kinds of V site allowing it to enhance the ion intercalation by introducing three different intercalation sites along the tunnel. The tunnel can act as a fast diffusion path for ion diffusion, which can improve the overall charge storage kinetics. In this study, high quality single crystalline sodium vanadate (${\beta}$-Na0.33V2O5) nanowires were grown directly on Pt coated $SiO_2$ substrate by a facile chemical solution deposition method without employing catalyst, surfactant or carrier gas. The results show that great enhancement in capacitance was observed compared with previous reports.

  • PDF

Performance of Zn-based oxide thin film transistors with buried layers grown by atomic layer deposition

  • An, Cheol-Hyeon;Lee, Sang-Ryeol;Jo, Hyeong-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.77.1-77.1
    • /
    • 2012
  • Zn 기반 산화물 반도체는 기존의 비정질 Si에 비해 저온공정에도 불구하고 높은 이동도, 투명하다는 장점으로 인해 차세대 디스플레이용 백플레인 소자로 주목받고 있다. 산화물 트랜지스터는 우수한 소자특성을 보여주고 있지만, 온도, 빛, 그리고 게이트 바이어스 스트레스에 의한 문턱전압의 불안정성이 문제의 문제를 해결해야한다. 산화물 반도체의 문턱전압의 불안정성은 유전체와 채널층의 계면 혹은 채널에서의 charge trap, photo-generated carrier, ads-/desorption of molecular 등의 원인으로 보고되고 있어, 고신뢰성의 산화물 채널층을 성장하기 위한 노력이 이루어지고 있다. 최근, 산화물 트랜지스터의 다양한 조건에서의 문턱전압의 불안정성을 해결하기 위해 산화물의 주된 결함으로 일컬어지고 있는 산소결핍을 억제하기 위해 성장공정의 제어 그리고, 산소와의 높은 binding energy를 같은 Al, Hf, Si 등과 같은 원소를 첨가하여 향상된 소자의 특성이 보고되고 있지만, 줄어든 산소공공으로 인해 이동도가 저하되는 문제점이 야기되고 있다. 이러한 문제점을 해결하기 위해, 최근에는 Buried layer의 삽입 혹은 bi-channel 등과 같은 방안들이 제안되고 있다. 본 연구는 atomic layer deposition을 이용하여 AZO bureid layer가 적용된 ZnO 트랜지스터의 특성과 안정성에 대한 연구를 하였다. 다결정 ZnO 채널은 유전체와의 계면에 많은 interface trap density로 인해 positive gate bias stress에 의한 문턱전압의 불안정성을 보였지만, AZO층이 적용된 ZnO 트랜지스터는 줄어든 interface trap density로 인해 향산된 stability를 보였다.

  • PDF

Influence of Metallic Contamination on Photovoltaic Characteristics of n-type Silicon Solar-cells (중금속 오염이 n형 실리콘 태양전지의 전기적 특성에 미치는 영향에 대한 연구)

  • Kim, Il-Hwan;Park, Jun-Seong;Park, Jea-Gun
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.17-20
    • /
    • 2018
  • The dependency of the photovoltaic performance of p-/n-type silicon solar-cells on the metallic contaminant type (Fe, Cu, and Ni) and concentration was investigated. The minority-carrier recombination lifetime was degraded with increasing metallic contaminant concentration, however, the degradation sensitivity of recombination lifetime was lower at n-type than p-type silicon wafer, which means n-type silicon wafer have an immunity to the effect of metallic contamination. This is because heavy metal ions with positive charge have a much larger capture cross section of electron than hole, so that reaction with electrons occurs much more easily. The power conversion efficiency of n-type solar-cells was degraded by 9.73% when metallic impurities were introduced in the silicon bulk, which is lower degradation compared to p-type solar-cells (15.61% of efficiency degradation). Therefore, n-type silicon solar-cells have a potential to achieve high efficiency of the solar-cell in the future with a merit of immunity against metal contamination.

The D/H Ratio of Water Ice at Low Temperatures

  • Lee, Jeong-Eun;Bergin, Edwin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.105.1-105.1
    • /
    • 2011
  • We present the modeling results of deuterium fractionation of water ice, $H_2$, and the primary deuterium isotopologues of $H3^+$ in the physical conditions associated with the star and planet formation process. We calculated the deuterium chemistry for a range of gas temperatures (Tgas~10-30 K) and ortho/para ratio (opr ) of $H_2$ based on state-to-state reaction rates and explore the resulting fractionation including the formation of a water ice mantle coating grain surfaces. We find that the deuterium fractionation exhibits the expected temperature dependence of large enrichments at low gas temperature, but only for opr-H2<0.01. More significantly the inclusion of water ice formation leads to large D/H ratios in water ice (${\geq}10^{-2}$ at 10 K) but also alters the overall deuterium chemistry. For T<20 K the implantation of deuterium into ices lowers the overall abundance of HD which reduces the efficiency of deuterium fractionation at high density. Under these conditions HD will not be the primary deuterium reservoir in the cold dense interstellar medium and $H3^+$ will be the main charge carrier in the dense centers of pre-stellar cores and the protoplanetary disk midplane.

  • PDF

Synthesis and Light-emitting Properties of Poly (fluorene) Copolymers Containing EDOT Comonomer

  • Hwang, Do-Hoon;Park, Moo-Jin;Lee, Ji-Hoon
    • Journal of Information Display
    • /
    • v.5 no.4
    • /
    • pp.12-17
    • /
    • 2004
  • A series of statistical random copolymers of dioctylfluorene (DOF) and 3,4-ethylenedioxythiophene (EDOT) were synthesized by Ni (0) mediated polymerization and their light-emitting properties were compared with poly (9,9-di-n-octylfluorene) (PDOF). The synthesized polymers were characterized using UV-vis spectroscopy, TGA, photoluminescence (PL) & electroluminescence (EL) spectroscopy and by conducting molecular weight studies. The resulting polymers were found to be thermally stable and readily soluble in organic solvents. The UV-visible absorption and PL emission spectra of the copolymers were gradually red-shifted as the fraction of EDOT in copolymers increased. Light-emitting devices were fabricated in an ITO (indium-tin oxide)/PEDOT/polymer/Ca/Al configuration. Interestingly, the EL spectra of these devices were similar to the PL spectra of the corresponding polymer film. However, the EL devices constructed from the copolymer showed more than 10 times higher efficiency level than the devices constructed from the PDOF homopolymer. This higher efficiency is possibly the result of better charge carrier balance in the copolymer systems due to the lower HOMO levels of the copolymers in comparison to that of PDOF homopolymer.

Investigation of Photoluminescence and Annealing Effect of PS Layers

  • Han, Chang-Suk;Park, Kyoung-Woo;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.124-128
    • /
    • 2018
  • N-type porous silicon (PS) layers and thermally oxidized PS layers have been characterized by various measuring techniques such as photoluminescence (PL), Raman spectroscopy, IR, HRSEM and transmittance measurements. The top surface of PS layer shows a stronger photoluminescence peak than its bottom part, and this is ascribed to the difference in number of fine silicon particles of 2~3 nm in diameter. Observed characteristics of PL spectra are explained in terms of microstructures in the n-type PS layers. Common features for both p-type and n-type PS layers are as follows: the parts which can emit visible photoluminescence are not amorphous, but crystalline, and such parts are composed of nanocrystallites of several nm's whose orientations are slightly different from Si substrate, and such fine silicon particles absorb much hydrogen atoms near the surfaces. Light emission is strongly dependent on such fine silicon particles. Photoluminescence is due to charge carrier confinement in such three dimensional structure (sponge-like structure). Characteristics of visible light emission from n-type PS can be explained in terms of modification of band structure accompanied by bandgap widening and localized levels in bandstructure. It is also shown that hydrogen and oxygen atoms existing on residual silicon parts play an important role on emission stability.

Effect of the Recycling of Non-condensable Gases on the Process of Fast Pyrolysis for Palm Wastes (미응축가스 재순환에 따른 팜 부산물 급속열분해 반응 공정 특성)

  • Oh, Changho;Lee, Jang Hoon
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.233-238
    • /
    • 2018
  • Bio-oil is produced by the fast quenching of hot vapor produced by fast pyrolysis of biomass in an inert atmosphere. Nitrogen is used as carrier gas to control the concentration of oxygen less than 3%. The consumption of nitrogen should be increased with increasing process size, and leading to increasing of facility and operating costs due to nitrogen charge. The effects of the recycling of non-condensable gases on the fast pyrolysis, bio-oil yield and quality, and nitrogen consumption have systematically investigated to see the possibility of these results in fast pyrolysis process of palm residue.