• Title/Summary/Keyword: Charge and discharge current

Search Result 328, Processing Time 0.034 seconds

Charge-Pump High Voltage Inverter for Plasma Backlight using Current Injection Method (CIM(Current Injection Method)을 이용한 Charge-Pump 방식의 Plasma Backlight용 고압Inverter)

  • Jang, Jun-Ho;Kang, Shin-Ho;Lee, Kyung-In;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.386-393
    • /
    • 2007
  • Charge-pump high voltage inverter for Plasma backlight using CIM(Current Injection Method) is proposed in this paper. Adoption of ERC(Energy Recovery Circuit) is a new attempt in high voltage inverter so that it is not only energy recovery but also improvement of discharge stability and system unstability which is interrupted by noise. Using a charge-pump technique enables low voltage switches to be usable, the cost can be reduced. CIM is adopted to achieve high speed energy recovery in proposed circuit. Operations of the proposed circuit are analyzed for each mode. The proposed circuit is verified to be applicable on a 32 inch plasma backlight panel by experimental results.

Electrochemical Characteristics of $LiMn_{2}O_{4}$/Lithium Cells in Organic Electrolyte (유기전해액 $LiMn_{2}O_{4}$/Lithium 전지의 전기화학적 특성)

  • 임정환;도칠훈;문성인;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.371-374
    • /
    • 2000
  • The electrochemical properties of LiM $n_2$ $O_4$as a cathode and an anode for the lithium secondary battery were evaluated. When LiM $n_2$ $O_4$ material was used as the cathode with the current collector of aluminum, the 1st specific capacity and the 1st Ah efficiency in LiM $n_2$ $O_4$/lithium cell were 123 mAh/g and 91.7%, respectively The anodic properties of LiM $n_2$ $O_4$ material was also evaluated in the LiM $n_2$ $O_4$/1ithium cell with the current collector of copper. It showed that the LiM $n_2$ $O_4$ was useful as the anode for the lithium secondary battery. During the 1st discharge, a potential plateau was observed at the potential of 0.3 $V_{Li}$ Li+/. The 1st specific charge capacity and the 1st specific discharge capacity were 790 mAh/s and 362 mAh/g, respectively. Therefore, the 1st Ah efficiency was 46%. The discharge capacity was gradually faded with the charge-discharge cycling to about 50th cycles. Thereafter, the discharge capacity was stabilized to about 110 mAh/g.

  • PDF

Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application

  • Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1799-1805
    • /
    • 2014
  • In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layer-by-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at $100^{\circ}C$, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-$RGO_{30}$/PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-$RGO_{30}$/PET electrode was found to be $529F/cm^3$ at a current density of $3A/cm^3$, which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-$RGO_{30}$/PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode.

A Study on the Configuration of BOP and Implementation of BMS Function for VRFB (VRFB를 위한 BOP 구성 및 BMS 기능구현에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Chung, Dong-Hwa;Park, Byung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.74-83
    • /
    • 2014
  • This paper proposes a study on the configuration of balancing of plant(BOP) and implementation of battery management system(BMS) functions for vanadium redox flow battery(VRFB) and propose a method consists of sensor and required design specifications BOP system configuration. And it proposes an method of the functions implementation and control algorithm of the BMS for flow battery. Functions of BMS include temperature control, the charge and discharge control, flow control, level control, state of charge(SOC) estimation and a battery protection through the sensor signal of BOP. Functions of BMS is implemented by the sensor signal, so it is recognized as a very important factor measurement accuracy of the data. Therefore, measuring a mechanical signal(flow rate, temperature, level) through the BOP test model, and the measuring an electrical signal(cell voltage, stack voltage and stack current) through the VRFB charge-discharge system and analyzes the precision of data in this paper. Also it shows a good charge-discharge test results by the SOC estimation algorithm of VRFB. Proposed BOP configuration and BMS functions implementation can be used as a reference indicator for VRFB system design.

A Study on Electric Properties of Epoxy Resin on Filler Shape (충전제 형상이 미치는 에폭시 수지의 전기적 특성에 관한 연구)

  • 이성일
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.3
    • /
    • pp.231-241
    • /
    • 2001
  • The epoxy resin materials used in outdoor high voltage equipments are required to have the high electric performance because of the miniaturization. The frequence dependence of the permittivity and the loss tangent have important information. In this paper we describe the frequency dependence of the permittivity and the loss tangent for epoxy resin filled with silica and the influence of filler shapes on the dielectric properties. The increment of tan $\delta$ in the low frequency region is caused by the increment of both the electrical conductivity and the polarization due to the shape of filler and the water absorbed in and near the interface between fillers and resins. The result of charge current and discharge measure, electric conduction is increased according to voltage.

  • PDF

Charge-discharge behaviour of $LiNi_{0.85}Co_{0.15}O_2>/MPCF$ cell ($LiNi_{0.85}Co_{0.15}O_2/MPCF$전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.25-28
    • /
    • 1998
  • Lithiated cobalt and nickel oxides are becoming very attractive as active cathode materials for secondary lithium ion secondary battery. $LiCoO_2$ is easily synthesized from lithium cobalt salts, but has a relatively high oxidizing potential on charge. LiNiOz is synthesized by a more complex procedure and its nonstoichiometry significantly degraded the charge-discharge characteristics. But $LiNiO_2$ has a lower charge potential which increases the system stability. Lithiated cobalt and nickel oxides are iso-structure which make the preparation of solid solutions of $LiNi_{1-x}Co_xO_2$ for O$LiCoO_2 and LiNiO_2$ electrode. The aim of the presentb paper is to study the electrochemical behaviour, as weU as the possibilities for practical application of layered Iithiated nickel oxide stabilized by $Co^{3+}$ substitution as active cathode materials in lithium ion secondary battery.

  • PDF

A Study on the Displacement and Discharge Current Waveform in AC PDP (AC PDP의 변위전류 및 방전전류에 관한 연구)

  • Lee, Woo-Geun;Ha, Seok-Cheon;Lee, Sung-Hyun;Cho, Jung-Soo;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.385-387
    • /
    • 1997
  • This paper deals with the relationships between discharge current wave form and the structure of AC PDP cells. The Paschen minimum can be found in the range of $200{\sim}300\;torr$ under the condition of electrode width of $300{\mu}m$ and $100{\mu}m$ electrode gap. Furthermore, the charge current does not vary with the gas pressure, whereas the time delay in the discharge inception voltage decreased both peak and r.m.s discharge current increase with gas pressure and electrode width.

  • PDF

Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method (Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동)

  • Kim, Sung Joon;Lim, Tae Seop;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

Effects of Pre-formed Space Charges by Negative DC Voltages on PD Characteristics in XLPE (부극성 직류전압에 의해 사전 형성된 공간전하가 XLPE의 부분방전특성에 미치는 영향)

  • 황보승;이준호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.310-313
    • /
    • 2003
  • The purpose of this paper is to evaluate the effects of pre-formed space charges by DC stress on partial discharge(PD) characteristics in XLPE. We have suggested a modified pulsed electro-acoustic(PEA) method and successfully measured both space charge distribution and current simultaneously. It has been demonstrated that the PD patterns are strongly influenced by the pre-formed space charge distributions, which are hardly disappeared up to AC 8㎸ in electrode configuration including air gap between XLPE layer and electrode. From the results, it could be said that the pre-formed space charges by DC stress can play harmful and dangerous roles in insulating system under AC operating voltages because of the field distortion and localization due to the pre-formed space charge.

A Study on Iron Electrode of Ni/Fe Battery(II) (니켈/철 축전지의 철전극에 관한 연구(II))

  • 김운석;박성용;조원일;조병원;윤경석
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.300-307
    • /
    • 1993
  • To develop high performance nickel-iron secondary battery, the characteristics of charge-discharge reaction of iron electrode were examined by cyclic voltammetry technique, SEM and XRD analysis. The capacity of the test electrodes was determined by the constant current charge-discharge method. It was found that the temperature and concentration of electrolyte were the major determinant factors of electrode capacity, and especially the 1st discharge capacity was increased with the increase of temperature. The effect of fore forming agent on the electrode capacity was negligible. The electrode capacity was above 350 ㎃h/g(36% utility) at 0.25C discharge rate. The stability of electrode was very good, but the activation occurred slowly.

  • PDF