• Title/Summary/Keyword: Charge and discharge

검색결과 1,308건 처리시간 0.026초

에폭시 수지의 유전특성.충방전특성에 미치는 충전제 형상의 영향 (Influence of Filler Shape on Dielectric & Electric Charge-Discharge Properties of Filled Epoxy Resin)

  • 이성일;박일규;류성림;주인규
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.81-84
    • /
    • 2000
  • In this paper, we have the investigated the Influence of Filler Shape on Dielectric & Electric Charge-Discharge Properties of Filled Epoxy Resin. In the low frequency range from 50Hz to a few kHz, the maginitude of tan$\delta$ become larger in the order, NON, RAS, SAS, SCS. The electrical Discharge of RAS measured for 60 min, decreased after 10$^2$∼10$^3$.

  • PDF

에폭시 수지의 유전특성.충방전특성에 미치는 충전제 형상의 영향 (Influence of Filler Shape on Dielectric & Electric Charge-Discharge Properties of Filled Epoxy Resin)

  • 이성일;박일규;류성림;주인규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.81-84
    • /
    • 2000
  • In this paper, we have the investigated the Influence of Filler Shape on Dielectric & Electric Charge-Discharge Properties of Filled Epoxy Resin. In the low frequency range from 50Hz to a few kHz, the magnitude of tan$\delta$ become larger in the order, NON, RAS, SAS, SCS. The electrical Discharge of RAS measured for 60 min, decreased after 10$^2$∼10$^3$.

  • PDF

오존발생을 위한 알루미나 방전관의 전하수송 특성 (Charge Transportation Characteristics of Alumina Discharge Chamber for Ozone Generation)

  • 김병섭;이성욱;박강일;이수호;곽동주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.529-532
    • /
    • 2003
  • In this paper, the discharge characteristics of silent discharge chamber with 2mm and 3mm gap spacings were investigated. Dielectric of $Al_2O_3$ was embedded in the cylindrical type of discharge chamber. It was known that V-I and P-V characteristics depend strongly on the charge transportation characteristics, and in the low frequency silent discharge mode of operation, discharge voltage was always sustained to Vd, irrespective of applied voltage.

  • PDF

PVDF 전구체를 이용한 탄소 도포 실리콘 재료의 개발 및 리튬이차전지 음극특성 (Development of Silicon Coated by Carbon with PVDF Precursor and Its Anode Characteristics for Lithium Batteries)

  • 도칠훈;정기영;진봉수;김현수;문성인;윤문수;최임구;박철완;이경직
    • 한국전기전자재료학회논문지
    • /
    • 제19권7호
    • /
    • pp.636-643
    • /
    • 2006
  • Si-C materials were synthesized by the heating the mixture of silicon and polyvinylidene fluoride (PVDF). The electrochemical properties of the Si-C materials as the high capacitive anode materials of lithium secondary batteries were evaluated by the galvanostatic charge-discharge test through 2032 type $Si-C{\mid}Li$ coin cells. Charge-discharge tests were performed at C/10 hour rate(C = 372 mAh/g). Initial discharge and charge capacities of $Si-C{\mid}Li$ cell using a Si-C material derived from PVDF(20wt.%) were found to be 1,830 and 526 mAh/g respectively. The initial discharge-charge characteristics of the developed Si-C electrode were analyzed by the electrochemical galvanostatic test adopting the capacity limited charge cut-off condition(GISOC). The range of reversible specific capacity IIE(intercalation efficiency at initial discharge-charge) and IICs(surface irreversible specific capacity) were 216 mAh/g, 68 % and 31 mAh/g, respectively.

Optimal Energy Shift Scheduling Algorithm for Energy Storage Considering Efficiency Model

  • Cho, Sung-Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1864-1873
    • /
    • 2018
  • Energy shifting is an innovative method used to obtain the highest profit from the operation of energy storage systems (ESS) by controlling the charge and discharge schedules according to the electricity prices in a given period. Therefore, in this study, we propose an optimal charge and discharge scheduling method that performs energy shift operations derived from an ESS efficiency model. The efficiency model reflects the construction of power conversion systems (PCSs) and lithium battery systems (LBSs) according to the rated discharge time of a MWh-scale ESS. The PCS model was based on measurement data from a real system, whereas for the LBS, we used a circuit model that is appropriate for the MWh scale. In addition, this paper presents the application of a genetic algorithm to obtain the optimal charge and discharge schedules. This development represents a novel evolutionary computation method and aims to find an optimal solution that does not modify the total energy volume for the scheduling process. This optimal charge and discharge scheduling method was verified by various case studies, while the model was used to realize a higher profit than that realized using other scheduling methods.

직류 코로나 하전된 강유전체구 층의 연면방전특성 (Surface Discharge Characteristics of a DC Corona Charged Ferroelectric Pellet Barrier)

  • 금상택;이근택;문재덕
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권5호
    • /
    • pp.385-390
    • /
    • 1999
  • Surface corona discharge characteristics of a dc corona charged ferroelectric pellet barrier have been investigated experimentally. Electric charges stored on the surfaces of the ferroelectric pellets by a dc corona discharge provide partial electric fields on the surfaces of the ferroelectric pellets, which could generate surface corona discharges on the ferroelectric pellets. This system utilizes both the surface discharges on the ferroelectric pellet barrier and the corona discharge between corona tip and mesh electrode. Positive and negative dc voltages were applied to the tip to generate partial discharges, and corona currents were estimated to investigate the buildup charge on ferroelectric pellets as a function of the applied time and the charge relaxation time constants of ferroelectric pellets. As a result, in the case of the negative corona discharge with the ferroelectric pellet barrier, the mean corona current and ozone generation increase greatly, and the surface discharges on the ferroelectric pellets can be fenerated efficiently. It is also found that, charge relaxation time, dielectric constants offerroelectric pellets, polarity of applied voltage and applied time affected to the surface discharges among the ferroelectric pellets.

  • PDF

해상용 항로표지 충·방전조절기의 근거리 모니터링 (Short-range Monitoring of Marine AtoN Charge and Discharge Controller)

  • 예성현;한순희
    • 한국정보통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.933-939
    • /
    • 2015
  • 일반전원이 공급되지 않은 광파표지는 태양광을 이용한 전력공급시스템을 사용하고 있다. 이러한 전력공급시스템에서는 충 방전조절기의 역할이 매우 중요하다. 항로표지의 효과적인 관리를 위해 도입된 IT기술(AIS통신 등)은 광파표지에 전력을 사용하는 장치를 추가하게 됨으로써 충 방전조절기의 중요성이 증가하고 있다. 현재 운용되는 충 방전조절기는 항로표지 내부에 부착되어 해상환경에 따라 점검 및 확인하는데 어려움이 있다. 이를 해결하기 위해서 본 논문에서는 충 방전조절기에 블루투스 모듈을 구성하여 근거리 점검이 가능한 모니터링 시스템을 제안하였다. 제안한 시스템은 도입 비용이 적고, 구성이 간편하여 다양한 항로표지에 응용가능한 장점이 있다. 또한 근거리에서 충 방전조절기의 실시간 상태정보를 확인할 수 있어서 점검 비용을 절감하고, 점검 시 발생 가능한 위험요소를 줄일 수 있다.

유기계 슈퍼커패시터에서 도전재의 양이 전기화학적 특성에 미치는 영향 (Effect of Conductive Additive Amount on Electrochemical Performances of Organic Supercapacitors)

  • 양인찬;이기훈;정지철
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.696-703
    • /
    • 2016
  • In this study, we intensively investigated the effect of conductive additive amount on electrochemical performance of organic supercapacitors. For this purpose, we assembled coin-type organic supercapacitor cells with a variation of conductive additive(carbon black) amount; carbon aerogel and polyvinylidene fluoride were employed as active material and binder, respectively. Carbon aerogel, which is a highly mesoporous and ultralight material, was prepared via pyrolysis of resorcinol-formaldehyde gels synthesized from polycondensation of two starting materials using sodium carbonate as the base catalyst. Successful formation of carbon aerogel was well confirmed by Fourier-transform infrared spectroscopy and $N_2$ adsorption-desorption analysis. Electrochemical performances of the assembled organic supercapacitor cells were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements. Amount of conductive additive was found to strongly affect the charge transfer resistance of the supercapacitor electrodes, leading to a different optimal amount of conductive additive in organic supercapacitor electrodes depending on the applied charge-discharge rate. A high-rate charge-discharge process required a relatively high amount of conductive additive. Through this work, we came to conclude that determining the optimal amount of conductive additive in developing an efficient organic supercapacitor should include a significant consideration of supercapacitor end use, especially the rate employed for the charge-discharge process.

Laves phase계 수소저장합금의 전기화학적 수소화 반응 매카니즘에 관한 연구 (A Study on the Electrochemical Hydrogenation Reaction Mechanism of the Laves Phase Hydrogen Storage Alloys)

  • 이지열;김찬중;김대용
    • 한국수소및신에너지학회논문집
    • /
    • 제8권1호
    • /
    • pp.31-41
    • /
    • 1997
  • In order to investigate the mechanism of electrochemical hydrogenation reaction on Zr-based Laves phase hydrogen storage alloy electrodes, electrochemical charge/discharge characteristics, potentiostatic/dynamic polarizations and electrocehmical impedance spectroscopy(EIS) of Zr-Ti-Mn-Ni and Zr-Ti-Mn-Ni-M(M=Fe, Co, Al) alloys were examined. Electrochemical discharge capacities of the alloys were quite different with gas charge capacities. Therefore, it was considered that discharge capacities of the alloys depend on electrochemical kinetic factors rather then thermodynamic ones. Discharge efficiencies were increased linearly with exchange current densities. The results of potentiostatic/dynamic polarization measurements showed that electrochemical charge and discharge reaction of Zr-based Laves phase hydrogen storage alloys is controlled by charge transfer process at the electrode surface. The EIS measurements also confirmed this result.

  • PDF

분무 및 코로나 방전에 의해 대전된 서브마이크론 입자의 대전량 분포 (Charge Distribution of Submicron Particles Charged by Spray Electrification or Corona Discharge)

  • 이재복;배귀남;황정호;이규원
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.124-132
    • /
    • 2001
  • This paper reports on the charge distribution measurements of submicron particles for three different charging mechanisms, which are spray electrification, bipolar ionization and corona discharge process, respectively. The number of elementary charges per particle was investigated by classifying and counting of a discrete mobility class. Charge distribution measurements were performed with NaCl particles generated from a collision atomizer for 0.01, 0.1, 1% NaCl solutions. Experimental results show than charge level of atomized NaCl particles is high and decreases with increasing the dissolved ion concentration. The charge level of the atomized NaCl particles can be reduced to that o Boltzmann equilibrium conditions by the bipolar ionization(Po(sup)210 bipolar ionizer). The charge level on NaCl particles passing through the corona discharge reactor is much higher than those of atomized or bipolar ionized NaCl particles. The evaluation of these measurements results in charge distribution of the submicron particles.