• Title/Summary/Keyword: Charge Transfer Resistance

Search Result 155, Processing Time 0.024 seconds

A Study on Heat Transfer Characteristics of a Closed Two-Phase Thermosyphon with a Low Tilt Angle (낮은 경사각을 갖는 밀폐형 2상 열사이폰의 열전달 특성에 관한 연구)

  • 김철주;강환국;김윤철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1996
  • In lots of application to heat exchanger systems, closed two-phase thermosyphons are tilted from a horizontal. If the tilt angle, especially, is less than 30$^{\circ}$, the operational performances of thermosyphon are highly dependent on tilt angle. The present study was conducted to better understand such operational behaviors as mech-anni는 of phase change, and flow patterns inside a tilted thermosyphon. For experiment, an ethanol thermosyphon with a 35% of fill charge rate was designed and manufactured, using a copper tube with a diameter 19mm and a length 1500mm. Through a series of test, the tilt angle was kept constant at each of 4 different values in the range 10~25deg. and the heat supply to the evaporator was stepwisely increased up to 30㎾/$m^2$. When a steady state was established to the thermosyphon for each step of thermal loads, the wall temperature distribution and vapor temperature at the condenser were measured. The wall temperature distributions demonstrated a formation of dry patch in the top end zone of the evaporator, with a values of temperature 20~4$0^{\circ}C$ higher than the wetted surface for a moderate heat flux q≒20㎾/$m^2$. Inspite of the presence of hot dry patch, however, the mean values of boiling heat transfer coefficient at the evaporator wall were still in a good agreement with those predicted by Rohsenow's formula, which was based on nucleate boiling. For the condenser, the wall temperatures were practically uniform, and the measured values of condensation heat transfer coefficient were 1.7 times higher than the predicted values obtained from Nusselt's film condensation theory on tilted plate. Using those two expressions, a correlation was formulated as a function of heat flux and tilt angle, to determine the total thermal resistance of a tilted thermosyphon. The correlation formula showed a good agreement with the experimental data within 20%.

  • PDF

Analysis of Electrochemical Characteristics of the Rechargeable $LiMn_2O_4$ Thin Film Battery (재충전이 가능한 박막전자용 $LiMn_2O_4$ 박막 전지의 전기화학 특성 분석)

  • Kim Joo-Seok;Jung Hunjoon;Kim Chan-Soo;Joo Seung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.131-135
    • /
    • 2000
  • In order to investigate the origin of capacity fading with charge/discharge cycling in $LiMn_2O_4$ thin film battery, impedance studies have been performed with increasing cycling in $LiMn_2O_4/1M\;LiClO_4-PC/Li$ cells. The fitted values obtained from impedance data show good agreements with the experimental results. Especially, the element of charge transfer resistance of $LiMn_2O_4/liquid$ electrolyte interface initially increased, and then saturated with increasing the charge/discharge cycles, which could explain the cause of initial abrupt capacity fading of $LiMn_2O_4$ thin film with cycling due to interfacial reaction. The steady capacity fading is caused by the increasing of Warburg resistance. The chemical diffusion coefficient of Li ions decreased from $5.15\times10^{-11}cm^2/sec$ at 1st cycles to $6.3\times10^{-12}cm^2/sec$ at 800th cycles, which attributed to the Jahn-Teller distortion/Mn dissolution which diminishes tetra hedral sites necessary for Li diffusion in $LiMn_2O_4$.

Radiation Resistance of BGO:Eu Scintillator (BGO:Eu 섬광체의 방사선 저항)

  • Kim, Jong-Il;Jeong, Jung-Hyun;Doh, Sih-Hong;Hwang, Hae-Sun;Kim, Sung-Chuel;Kim, Jung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.16-23
    • /
    • 1997
  • Bismuth germanate crystals well known as scintillator were grown by Czochralski method. In order to understand a mechanism of radiation resistance in Eu-doped BGO, we measured radiation induced-absorption spectra, excitation spectra, emission spectra and luminescence lifetimes of BGO crystals. We found that the charge transfer state of $Eu^{3+}$ ion is to play a key role to enhance the radiation resistance in BGO crystal. The $^{5}D_{0}$ emission of $Eu^{3+}$ ions that is not suitable for the radiation detectors due to a long decay time was found to be increased with increasing europium concentration. In the BGO crystal doped with 0.1 mole%, the density of radiation induced color centers was reduced about twenty times and the light output of $^{5}D_{0}$ was negligible by comparing to that of BGO.

  • PDF

Evaluation of corrosion resistance of Co-Cr alloys fabricated with different metal laser sintering systems

  • Tuna, Suleyman Hakan;Karaca, Erhan;Aslan, Ismail;Pekkan, Gurel;Pekmez, Nuran Ozcicek
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.114-123
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the corrosion resistance of the specimens produced by five different commercial metal laser sintering (MLS) systems with their recommended Co-Cr alloy powders. MATERIALS AND METHODS. The MLS machines and the alloy powders used were, ProX 100-ST2724G (St-Pro), Mysint 100-EOS SP2 (SP2-Mys), EOSINT 270-EOS SP2 (SP2-EOS), SLM 100-Starbond CoS (SB-SLM), and MLab Cusing-Remanium® Star (RS-MLab), respectively. Eight specimens from each group were prepared. Open circuit potential (Eocp) and electrochemical impedance spectroscopy (EIS) measurements of polished surfaces of the specimens were conducted in a three-electrode cell using a potentiostat-galvanostat in Fusayama-Meyer artificial saliva (AS). Specimens from each group were immersed in AS and de-ionized water for seven days. Eocp, charge transfer resistance (Rct) values, and released ions (㎍/㎠ × 7d) in different solutions were determined. The specimen surfaces were observed with SEM/EDS. Results were analyzed statistically. RESULTS. Eocp values have shifted to potentials that are more positive over time. Steady-state Eocp values were from high to low as follows, SB-SLM, SP2-Mys, SP2-EOS, RS-MLab, and ST-Pro, respectively. After 60 mins, RS-MLab specimens had the highest Rct value, followed by SP2-Mys, SB-SLM, SP2-EOS, and ST-Pro. In all groups, ion release was higher in AS than that in de-ionized water. CONCLUSION. There were small differences among the corrosion resistances of the Co-Cr alloy specimens produced with MLS systems; meanwhile, the corrosion resistances were quite high for all specimens.

Synthesis and Electrochemical Performance of Reduced Graphene Oxide/AlPO4-coated LiMn1.5Ni0.5O4 for Lithium-ion Batteries

  • Hur, Jaehyun;Kim, Il Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3553-3558
    • /
    • 2014
  • The reduced graphene oxide(rGO)/aluminum phosphate($AlPO_4$)-coated $LiMn_{1.5}Ni_{0.5}O_4$ (LMNO) cathode material has been developed by hydroxide precursor method for LMNO and by a facile solution based process for the coating with GO/$AlPO_4$ on the surface of LMNO, followed by annealing process. The amount of $AlPO_4$ has been varied from 0.5 wt % to 1.0 wt %, while the amount of rGO is maintained at 1.0 wt %. The samples have been characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The rGO/$AlPO_4$-coated LMNO electrodes exhibit better cyclic performance compared to that of pristine LMNO electrode. Specifically, rGO(1%)/$AlPO_4$(0.5%)- and rGO(1%)/$AlPO_4$(1%)-coated electrodes deliver a discharge capacity of, respectively, $123mAhg^{-1}$ and $122mAhg^{-1}$ at C/6 rate, with a capacity retention of, respectively, 96% and 98% at 100 cycles. Furthermore, the surface-modified LMNO electrodes demonstrate higher-rate capability. The rGO(1%)/$AlPO_4$(0.5%)-coated LMNO electrode shows the highest rate performance demonstrating a capacity retention of 91% at 10 C rate. The enhanced electrochemical performance can be attributed to (1) the suppression of the direct contact of electrode surface with the electrolyte, resulting in side reactions with the electrolyte due to the high cut-off voltage, and (2) smaller surface resistance and charge transfer resistance, which is confirmed by total polarization resistance and electrochemical impedance spectroscopy.

A study on the SEI film formation as organic solvent decomposition of lithium ion batteries and its electrochemical behavior (리튬이온전지의 유기용매분해에 따른 SEI film 형성과 전기화학적 거동에 관한 연구)

  • Kim, Min-Seong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.545-549
    • /
    • 2001
  • We have produced electrolyte solution out of 1.15M $LiPF_6$ EC/EMC/DEC/PC(30/55/10/5 by vol%) as a reference, and at the same time, performed basic physical property test using a single solvent of 1.15M $LiPF_6$ DEC, DMC, EMC and a 2 component electrolyte solution of 1.15M $LiPF_6$ EC/DEC(1/2 by vol%) and PC/DEC(1/2 by vol%). Cyclic Voltammetry Analysis showed that, compared to existing carbonate organic solvent, the addition of DEC,DMC and EMC brought the de-decomposition peak of salt anion of $PF_6$ and the solvent at lower oxidization potential of 2.3V, 0.7V and 2.1V(vs. $Li/Li^+$). In addition, a kinetics current peak, in which intercalation of Lt is proceeded at 750mV, 450mV(vs. $Li/Li^+$), was confirmed. These findings suggest that the DEC solvent decomposition occurred at an electric potential lower than that of oxidization of existing carbonate organic solvent. Through the impedance analysis, we checked electric charge transfer resistance($R_{ct}$) according to the electric potential of $Li^+$ intercalation at 750mV(vs. $Li/Li^+$), which was the same as the resistance ($R_f$) and cyclic voltammetry of SEI film that was formed at Reference. By doing so, we found that the significant decrease of polarization resistance($R_p$) when Reference was played a part in the formation of compact SEI layer at the initial decomposition reaction.

  • PDF

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

A study on the SEI film formation as organic solvent decomposition of lithium ion batteries and its electrochemical behavior (리튬이온전지의 유기용매분해에 따른 SEI film형성과 전기화학적 거동에 관한 연구)

  • 김민성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.545-549
    • /
    • 2001
  • We have produced electrolyte solution out of 1.15M LiPF$\sub$6/ EC/EMC/DEC/PC(30/55/10/5 by vol%) as a reference, and at the same time, performed basic physical property test using a single solvent of 1.15M LiPF$\sub$6/DEC, DMC, EMC and a 2 component electrolyte solution of 1.15M LiPF$\sub$6/ EC/DEC(1/2 by vo%%) and PC/DEC(1/2 by vol%). Cyclic Voltammetry Analysis showed that, compared to existing carbonate organic solvent, the addition of DEC, DMC and EMC brought the de-decomposition peak of salt anion of PF$\sub$6/$\^$-/ and the solvent at lower oxidization potential of 2.3V, 0.7V and 2.1V(vs. Li/Li$\^$+/\`). In addition, a kinetics current peak, in which intercalation of Li$\^$+/ is proceeded at 750mv, 450mv(vs. Li/Li$\^$+/), was confirmed. These findings suggest that the DEC solvent decomposition occurred at an electric potential lower than that of oxidization of existing carbonate organic solvent. Through the impedance analysis, we checked electric charge transfer resistance(R$\sub$ct/) according to the electric potential of Li$\^$+/ intercalation at 750mv(vs. Li/Li$\^$+/), which was the same as the resistance (R$\sub$f/) and cyclic voltammetry of SEI film that was formed at Reference. By doing so, we found that the significant decrease of polarization resistance(R$\sub$p/) when Reference was played a part in the formation of compact SEI layer at the initial decomposition reaction.

  • PDF

Transfer of Heat-treated ZnO Thin-film Plastic Substrates for Transparent and Flexible Thin-film Transistors (투명 유연 박막 트랜지스터의 구현을 위한 열처리된 산화아연 박막의 전사방법 개발)

  • Kwon, Soon Yeol;Jung, Dong Geon;Choi, Young Chan;Lee, Jae Yong;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.182-185
    • /
    • 2018
  • Zinc oxide (ZnO) thin films have the advantages of growing at a low temperature and obtaining high charge mobility (carrier mobility) [1]. Furthermore, the zinc oxide thin film can be used to control application resistance depending on its oxygen content. ZnO has the desired physical properties, a transparent nature, with a flexible display that makes it ideal for use as a thin-film transistor. Though these transparent flexible thin-film transistors can be manufactured in various manners, manufacturing large-area transistors using a solution process is easier owing to the low cost and flexible substrate. The advantage of being able to process at low temperatures has been attracting attention as a preferred method. However, in the case of a thin-film transistor fabricated through a solution process, it is reported that charge mobility is lower. To improve upon this, a method of improving the crystallinity through heat treatment and increasing electron mobility has been reported. However, as the heat treatment temperature is relatively high at $500^{\circ}C$, an application where a flexible substrate is absent would be more suitable.

Development of Boron Doped Carbon Using CO2 Reduction with NaBH4 for Vanadium Redox Flow Battery (수소화 붕소 나트륨 (NaBH4) 과 이산화탄소의 환원을 이용한 바나듐 레독스 흐름전지용 탄소 촉매 개발)

  • Han, Manho;Kim, Hansung
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In this study, boron - doped carbon was prepared by reducing carbon dioxide ($CO_2$) at high temperature by using sodium borohydride ($NaBH_4$). The boron - doped carbon was coated on carbon felt and applied as an electrode for a vanadium redox battery cell. As a result of electrochemical performance evaluation, reversibility of carbon felt coated with boron doped carbon compared to pure carbon felt was improved by about 20% and charge transfer resistance was reduced by 60%. In the charge / discharge results, energy density and energy efficiency were improved by 21% and 12.4%, respectively. These results show that carbon produced by reduction of $CO_2$ can be used as electrode material for redox flow battery.