• Title/Summary/Keyword: Characterization model simulation

Search Result 110, Processing Time 0.026 seconds

Characterization of the dynamic behavior of a linear guideway mechanism

  • Chang, Jyh-Cheng;Wu, Shih-Shyn James;Hung, Jui-Pin
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.1-20
    • /
    • 2007
  • Dynamic behaviors of the contact surface between ball and raceway in a guideway mechanism vary with the applied loads and hence affect the mechanical responses of machine tools. The study aims to investigate the nonlinear characteristics of dynamic behaviors at the rolling contact interface in linear guideway mechanisms. Firstly, analytical method was introduced to understand the contact behaviors based on Hertz contact theory in a point-to-point way. Then, the finite element approach with a three-dimensional surface-to-surface contact model and appropriate contact stiffness was developed to study the dynamic characteristics of such linear guideways. Finally, experiments with modal test were conducted to verify the significance of both the analytical and the numerical results. Results told that the finite element approach may provide significant predictions. The study results also concluded that the current nonlinear models based on Hertz's contact theory may accurately describe the contact characteristic of a linear guideway mechanism. In the modal analysis, it was told that the natural frequencies vary a little with different loading conditions; however, the mode shapes are changed obviously with the magnitude of applied loads. Therefore, the stiffness of contact interface needs to be properly adjusted during simulation which may affect the dynamic characteristics of the machine tools.

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case Hyundai BMT4 (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - 현대자동차 BMT4)

  • Blanchet, D.;Golota, A.;Almenar, R.;Lim, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.563-564
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses several simulation methods that can be used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied in the framework of a benchmark proposed by Hyundai Motors Corporation.

  • PDF

Risk assessment of wastewater reuse for Irrigation water (하수처리수의 관개용수 재이용을 위한 위해성 평가)

  • Han, Jung-Yoon;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Jang, Jae-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.661-666
    • /
    • 2005
  • Wastewater reuse are exposed public health risk by pathogens. Therefore, this study was examined for microbial risk assessment after irrigation as treated wastewater in paddy rice plots. Five treatments were used: biofilter effluent, UV disinfected water, pond treatment, wetland treatment and conventional irrigation water. Risk assessment was calculated based on the beta-Poisson model by concentration of E. coli from 2003 to 2005. Monte-Carlo simulation (n=10,000) was used to estimate the risk characterization of uncertainty. The risk range was from $10^{-5}$ to $10^{-8}$ except biofilter effluent was $10^{-4}$ in June. The USEPA(1992) has recommended that risk of < $10^{-4}$ is acceptable level of safety for potable waters. In 2005, risk value was lower than 2003, 2004 because of the first irrigation for plowing water is lower E. coli concentration used tap water. It is shown that the first irrigation water quality was important for wastewater irrigation in paddy. UV disinfection and natural treatment used pond and wetland were thought to be an effective for wastewater reuse.

  • PDF

PSPICE Modeling and Characterization of Optical Transmitter with 1550 nm InGaAsP LDs (1550 nm InGaAsP LD 광송신회로의 PSPICE 모델 및 광변조 특성 해석)

  • Goo, Yu-Rim;Kim, Jong-Dae;Yi, Jong-Chang
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • The PSPICE equivalent circuit elements of a 1550 nm InGaAsP laser diode were derived by using multi-level rate equations. The device parameters were extracted by using a self-consistent numerical method for the optical gain properties of the MQW active regions. The resulting equivalent circuit model is also applied to an actual optical transmitter, and its PSPICE simulation results show good agreement with the measured results once the parasitic capacitance due to the packaging is taken into account.

Investigation of the effects due to a permeable double skin façade on the overall aerodynamics of a high-rise building

  • Pomaranzi, Giulia;Pasqualotto, Giada;Zassso, Alberto
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.213-227
    • /
    • 2022
  • The design of a building is a complex process that encompasses different fields: one of the most relevant is nowadays the energetic one, which has led to the introduction of new typologies of building envelopes. Among them, the Permeable Double Skin Façades (PDSF) are capable to reduce the solar impact and so to improve the energetic performances of the building. However, the aerodynamic characterization of a building with a PDSF is still little investigated in the current literature. The present paper proposes an experimental study to highlight the modifications induced by the outer porous façade in the aerodynamics of a building. A dedicated wind tunnel study is conducted on a rigid model of a prismatic high-rise building, where different façade configurations are tested. Specifically, the single-layer façade is compared to two PDSFs, the former realized with perforated metal and the latter with expanded metal. Outcomes of the tests allow estimating the cladding loads for all the configurations, quantifying the shielding effects ascribable to the porous layers that are translated in a significant reduction of the design pressure that could be up to 50%. Moreover, the impact of the PDSFs on the vortex shedding is investigated, suggesting the capability of the façade to suppress the generation of synchronised vortices and so mitigate the structural response of the building.

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

Reliability Analysis of Slope Stability with Sampling Related Uncertainty (통계오차를 고려한 사면안정 신뢰성 해석)

  • Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.51-59
    • /
    • 2007
  • A reliability-based approach that can systematically model various sources of uncertainty is presented in the context of slope stability. Expressions for characterization of soil properties are developed in order to incorporate sampling errors, spatial variability and its effect of spatial averaging. Reliability analyses of slope stability with different statistical representations of soil properties show that the incorporation of sampling error, spatial correlation, and conditional simulation leads to significantly lower probability of failure than that obtained by using simple random variable approach. The results strongly suggest that the spatial variability and sampling error have to be properly incorporated in slope stability analysis.

The Analysis of Channel Characteristics on Downtown of Daejeon for K-Band Satellite Communication Using 3D Map (3차원 지형정보를 연동한 대전 도심지의 K 대역 위성 채널 특성 분석)

  • Kwon, Kun-Sup;Heo, Jong-Wan;Hwang, Ki-Min;Baek, Seong-Ho;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.607-617
    • /
    • 2014
  • This paper proposed the M&S(Modeling & Simulation) method of channel characterization of satellite communication in the operating area of satellite OTM(On-The-Move) terminal. In M&S, received signal profile was acquired by HTZ warfare software which uses 3 dimensional map including building, road information and geographical features, and then was analyzed statistically. And a received signal profile and its statistics from M&S data were compared with those from measured data. The research showed that the simulated received signal profile matched the measured one about 74.8 percent and simulated statistics matched well as roadside trees were excluded.

RADIOLOGICAL CHARACTERISTICS OF DECOMMISSIONING WASTE FROM A CANDU REACTOR

  • Cho, Dong-Keun;Choi, Heui-Joo;Ahmed, Rizwan;Heo, Gyun-Young
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.583-592
    • /
    • 2011
  • The radiological characteristics for waste classification were assessed for neutron-activated decommissioning wastes from a CANDU reactor. The MCNP/ORIGEN2 code system was used for the source term analysis. The neutron flux and activation cross-section library for each structural component generated by MCNP simulation were used in the radionuclide buildup calculation in ORIGEN2. The specific activities of the relevant radionuclides in the activated metal waste were compared with the specified limits of the specific activities listed in the Korean standard and 10 CFR 61. The time-average full-core model of Wolsong Unit 1 was used as the neutron source for activation of in-core and ex-core structural components. The approximated levels of the neutron flux and cross-section, irradiated fuel composition, and a geometry simplification revealing good reliability in a previous study were used in the source term calculation as well. The results revealed the radioactivity, decay heat, hazard index, mass, and solid volume for the activated decommissioning waste to be $1.04{\times}10^{16}$ Bq, $2.09{\times}10^3$ W, $5.31{\times}10^{14}\;m^3$-water, $4.69{\times}10^5$ kg, and $7.38{\times}10^1\;m^3$, respectively. According to both Korean and US standards, the activated waste of the pressure tubes, calandria tubes, reactivity devices, and reactivity device supporters was greater than Class C, which should be disposed of in a deep geological disposal repository, whereas the side structural components were classified as low- and intermediate-level waste, which can be disposed of in a land disposal repository. Finally, this study confirmed that, regardless of the cooling time of the waste, 15% of the decommissioning waste cannot be disposed of in a land disposal repository. It is expected that the source terms and waste classification evaluated through this study can be widely used to establish a decommissioning/disposal strategy and fuel cycle analysis for CANDU reactors.

Evaluation on Applicability of the Real-time Prediction Model for Influent Characteristics in Full-scale Sewerage Treatment Plant (하수처리장 유입수 성상 실시간 예측모델 및 활용성 평가)

  • Kim, Youn-Kwon;Kim, Ji-Yeon;Han, In-Sun;Kim, Ju-Hwan;Chae, Soo-Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1706-1709
    • /
    • 2010
  • Sewerage Treatment Plants(STPs) are complexes systems in which a range of physical, chemical and biological processes occur. Since Activated Sludge Model(ASM) No.1 was published, a number of new mathematical models for simulating biological processes have been developed. However, these models have disadvantages in cost and simplicity due to the laboriousness and tediousness of their procedures. One of the major difficulties of these mathematical model based tools is that the field-operators mostly don't have the time or the computer-science skills to handle there models, so it mainly remains on experts or special engineers. In order to solve these situations and help the field-operators, the $KM^2BM$(K-water & More-M Mass Balance Model) based on the dynamic-mass balance model was developed. This paper presents $KM^2BM$ as a simulation tools for STPs design and optimization. This model considers the most important microbial behavioral processes taking place in a STPs to maximize potential applicability without increasing neither model parameter estimation nor wastewater characterization efforts.

  • PDF