• Title/Summary/Keyword: Characteristic simulator

Search Result 268, Processing Time 0.029 seconds

A Study on Fire and Evacuation of TrainingShip HANBADA using FDS (FDS를 이용한 실습선 한바다호 화재 및 피난 연구)

  • KIM, Won-Ouk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.380-385
    • /
    • 2017
  • Maritime accidents caused by a ship include collisions, sinking, stranding and fire etc. This study is intending to consider fire accidents among such diverse marine accidents. It is much likely that various sorts of fires break out because crews are living in a narrow space for long periods of time consequent on the ship's characteristic of sailing on the sea. This study carried out a simulation through the special program for fire analysis - FDS (Fire Dynamics Simulator) in order to find the effective evacuation time, i.e. life survival time. Particularly, this study did comparative analysis of the influence on the survival of cadets based on the collected simulation data by fire size and sort. As a result of the analysis, It was analyzed the Evacuation Allowable Limit Temperature $60^{\circ}C$ and resulted that there is no influence in evacuation by temperature. In case of visibility analysis, it reached to 5m which is the Evacuation Allowable Limit at 117 seconds under the condition of wood fire in 1MW. When there is Kerosene in 1MW, it took 92.4 seconds to reach by 5m which is the Evacuation Allowable Limit. Theoretical evacuation time for the non-tilted ship was 118.8 seconds in 1MW sized fire so it is shown that the most passengers are met the evacuation safety in case of wood fire. However, the majority of passengers could not be ensured the evacuation safety in Kerosene case.

The Study of Algorithm for Communication Environment Channel Characteristic Embedded Control System and Wireless Communication (무선통신과 임베디드 제어시스템 통신환경의 채널특성 알고리즘에 관한 연구)

  • Kang, Jeong-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3B
    • /
    • pp.297-304
    • /
    • 2011
  • MIMO wireless communication embedded systems, and for propagation prediction for indoor and outdoor propagation prediction program incorporates an indoor/outdoor propagation through the simulator can be predicted. This analysis technique developed by the interference between multiple transmitters and a maximum transmission distance issues, the frequency utilization efficiency for a variety of issues, including analysis and prediction becomes possible. Development of the prediction of the conventional methods, but I can consider the environmental characteristics of the ray tracing simulation software to develop and implement an efficient ray tracing, ray tracing techniques and are designed to enable tracked beam analysis of propagation characteristics using information technology by combining the theoretical characteristics of an efficient and well-reflected propagation prediction technique was employed. The frequency of domestic embedded systems, ensure the frequency characteristics and frequency of 3-5GHz band for propagation to investigate the development of local wireless communication technology-based skills needed for securing and jeonpaganseopdeung frequency management techniques to ensure the verification and verified through experiments.

Implementation and Estimation of the LUTS Diagnosis System for Home Health Care (홈 헬스케어에 적용 가능한 하부요로계 폐색 모니터링 시스템 구현 및 평가)

  • Jeong Do-Un;Chung Wan-Young;Jeon Gye-Rork
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.697-700
    • /
    • 2006
  • A sensor and measuring system were implemented to measure two signals that uroflow and urophonography during urination for diagnose the lower urinary tract symptom. The implemented system was composed of the uroflow sensor using the load-cell, the urophonography measurement sensor so as stethoscope type, pre-processing part for sensors signal detection, amplifier and filter, system control parts and PC measurement program. A simulator of the lower urinary system that is experimental equipment implemented for evaluate the implemented system. The two signals were measured using implemented system and analyzed these signal by means of time domain and frequency domain for extraction of the characteristic parameter the most influence of effect according to occlusion of the lower urinary system. Furthermore two signals were measured and analyzed with the subject of 5 healthy adult for clinical application possibility of the implemented system. As a result, the most influence bandwidth of effect according to occlusion of the lower urinary system is $253\sim282Hz$ of the urophonography signal.

  • PDF

RSSI based Cooperative Localization Algorithm Considering Wireless Propagation Characteristics in Indoor Environment (실내 환경에서 무선 전파특성을 고려한 수신신호세기 기반의 협력 위치추정 알고리즘)

  • Jeong, Seung-Heui;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.875-878
    • /
    • 2010
  • In this paper, we proposed a RSSI based cooperative localization algorithm considering wireless propagation characteristics in indoor environment for wireless sensor networks, which can estimate the BN position. The conventional RSSI based estimation scheme has low precision ranging according to time variable propagation characteristics. Hence, we implemented ray-launching simulator for analysis of propagation characteristics in $13.65m{\times}8.7m$, and performed proposed localization scheme with 4 RN and 1 to 5 BN. From the results, if we can consider channal characteristic in proposed ranging scheme, the cooperative localization algorithm with propagation characteristics provides higher localization accuracy than RSSI based conventional one.

  • PDF

A Study on the element affecting in design and characteristics of PIMD for non-reciprocal element (비가역소자의 설계와 PIMD 특성에 영향을 미치는 요소에 관한 연구)

  • Jung, Seung-Woo;Lim, Kwang-Taeg
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1026-1033
    • /
    • 2007
  • This paper compared simulation characteristics on the design of center strip by structure simulator with manufacture of 2.6GHz non-reciprocal element. Secures condition that affect in PIMD and confirmed change value of PIMD by change of condition. Implemented non-reciprocal element shows more than 20dB isolation characteristic at center frequency(2,650MHz) and has 0.2dB insertion loss in overall 100MHz operating bandwidth. Return losses of input and output port are measured below -20dB. IMD of non-reciprocal element exhibited superior value when there were no gaps between internal components and when materials having identical substances were used, and it showed an improving tendency when the pressure was increased higher, however, in case of applying pressure higher than a certain level, it results in damages, etc. of the magnet inside and ferrite as well, so then the characteristics of IMD was rapidly increased along with decrease of frequency characteristics.

  • PDF

The effect of thermal anneal on luminescence and photovoltaic characteristics of B doped silicon-rich silicon-nitride thin films on n-type Si substrate

  • Seo, Se-Young;Kim, In-Yong;Hong, Seung-Hui;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.141-141
    • /
    • 2010
  • The effect of thermal anneal on the characteristics of structural properties and the enhancement of luminescence and photovoltaic (PV) characteristics of silicon-rich silicon-nitride films were investigated. By using an ultra high vacuum ion beam sputtering deposition, B-doped silicon-rich silicon-nitride (SRSN) thin films, with excess silicon content of 15 at. %, on P-doped (n-type) Si substrate was fabricated, sputtering a highly B doped Si wafer with a BN chip by N plasma. In order to examine the influence of thermal anneal, films were then annealed at different temperature up to $1100^{\circ}C$ under $N_2$ environment. Raman, X-ray diffraction, and X-ray photoemission spectroscopy did not show any reliable evidence of amorphous or crystalline Si clusters allowing us concluding that nearly no Si nano-cluster could be formed through the precipitation of excess Si from SRSN matrix during thermal anneal. Instead, results of Fourier transform infrared and X-ray photoemission spectroscopy clearly indicated that defective, amorphous Si-N matrix of films was changed to be well-ordered thanks to high temperature anneal. The measurement of spectral ellipsometry in UV-visible range was carried out and we found that the optical absorption edge of film was shifted to higher energy as the anneal temperature increased as the results of thermal anneal induced formation of $Si_3N_4$-like matrix. These are consistent with the observation that higher visible photoluminescence, which is likely due to the presence of Si-N bonds, from anneals at higher temperature. Based on these films, PV cells were fabricated by the formation of front/back metal electrodes. For all cells, typical I-V characteristic of p-n diode junction was observed. We also tried to measure PV properties using a solar-simulator and confirmed successful operation of PV devices. Carrier transport mechanism depending on anneal temperature and the implication of PV cells based on SRSN films were also discussed.

  • PDF

Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.261-277
    • /
    • 2020
  • The main objective of this research paper is to consider vibration analysis of vacancy defected graphene sheet as a nonisotropic structure via molecular dynamic and continuum approaches. The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defected graphene sheets. Molecular dynamic simulations have been performed to estimate the mechanical properties of graphene as a nonisotropic structure with single- and double- vacancy defects using open source well-known software i.e., large-scale atomic/molecular massively parallel simulator (LAMMPS). The interactions between the carbon atoms are modelled using Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. An isogeometric analysis (IGA) based upon non-uniform rational B-spline (NURBS) is employed for approximation of single-layered graphene sheets deflection field and the governing equations are derived using nonlocal elasticity theory. The dependence of small-scale effects, chirality and different defect types on vibrational characteristic of graphene sheets is investigated in this comprehensive research work. In addition, numerical results are validated and compared with those achieved using other analysis, where an excellent agreement is found. The interesting results indicate that increasing the number of missing atoms can lead to decrease the natural frequencies of graphene sheets. It is seen that the degree of the detrimental effects differ with defect type. The Young's and shear modulus of the graphene with SV defects are much smaller than graphene with DV defects. It is also observed that Single Vacancy (SV) clusters cause more reduction in the natural frequencies of SLGS than Double Vacancy (DV) clusters. The effectiveness and the accuracy of the present IGA approach have been demonstrated and it is shown that the IGA is efficient, robust and accurate in terms of nanoplate problems.

A Study on the Filter Modeling of Fading Channel for Digital Transmission (디지털 전송을 위한 페이딩 채널의 필터 모델링에 관한 연구)

  • 임승각;김노환
    • KSCI Review
    • /
    • v.2 no.1
    • /
    • pp.55-67
    • /
    • 1995
  • Recently, it is possible to high speed transmission of the non-voiced data, including voice, data, moving image instead of voice only in the past by changing the communication method to digital form from analog owing to the development of semiconductor and computer technology which for information transmission of the remote point. By doing so, we can get the improvement of the noise effect and low cost but the loss of transmission bandwidth. It is necessary to take some method in oreder to reducing the fading which is propotional to transmission bandwidth during the transmission of radio communication channel, especially. When we design the digital communication system, we must considered to the fading effect in order to determination of the transmitting power, modulation /demodulation method, transmission speed, bit error rate. This paper mainly concerns to the method to the channel simulator which descrives the fading effect during the transmission by computer model and digital filter modeling of the radio fading channel by unsing the transmitting and received signal. By taking the inverse of the characteristic of the modeled filter, it is possible to improvement of the communication system by reducing the distortion and inter-symbol interference which occurs in the channel.

  • PDF

Heterogeneous Network Gateway Architecture and Simulation for Tactical MANET (전술 에드혹 환경에서 이종망 게이트웨이 구조 및 시뮬레이션 연구)

  • Roh, Bong Soo;Han, Myoung Hun;Kwon, Dae Hoon;Ham, Jae Hyun;Yun, Seon Hui;Ha, Jae Kyoung;Kim, Ki Il
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • The tactical mobile ad-hoc network(MANET) consists of distributed autonomous networks between individual ground nodes, which is effective in terms of network survivability and flexibility. However, due to constraints such as limited power, terrain, and mobility, frequent link disconnection and shadow area may occur in communication. On the other hand, the satellite network has the advantage of providing a wide-area wireless link overcoming terrain and mobility, but has limited bandwidth and high-latency characteristic. In the future battlefield, an integrated network architecture for interworking multi-layer networks through a heterogeneous network gateway (HNG) is required to overcome the limitations of the existing individual networks and increase reliability and efficiency of communication. In this paper, we propose a new HNG architecture and detailed algorithm that integrates satellite network and the tactical MANET and enables reliable data transfer based on flow characteristics of traffic. The simulations validated the proposed architecture using Riverbed Modeler, a network-level simulator.

A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires (Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구)

  • Kim, Jae Hun;Son, Hyoung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.