• Title/Summary/Keyword: Characteristic Parameter

Search Result 1,086, Processing Time 0.036 seconds

The Analysis of Retention Characteristic according to Remnant Polarization(Pr) and Saturated Polarization(Ps) in 3D NAND Flash Memory (3D NAND Flash Memory의 Remnant Polarization(Pr)과 Saturated Polarization(Ps)에 따른 Retention 특성 분석)

  • Lee, Jaewoo;Kang, Myounggon
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.329-332
    • /
    • 2022
  • In this paper, retention characteristics of lateral charge migration according to parameters of 3D NAND flash memory to which ferroelectric (HfO2) structure is applied and ∆Vth were analyzed. The larger the Ps, the greater maximum polarization possible in ferroelectric during Programming. Therefore, the initial Vth increases by about 1.04V difference at Ps 70µC/cm2 than at Ps 25µC/cm2. Also, electrons trapped after the Program operation causes lateral charge migration over time. Since ferroelectric maintains polarization without applying voltage to the gate after Programming, regardless of Ps value, polarization increases as Pr increases and the ∆Vth due to lateral charge migration becomes smaller by about 1.54V difference at Pr 50µC/cm2 than Pr 5µC/cm2.

A Study on the Characteristics Analysis of LLC AC to DC High Frequency Resonant Converter capable of ZVZCS (ZVZCS가 가능한 LLC AC to DC 고주파 공진 컨버터의 특성 해석에 관한 연구)

  • Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.741-749
    • /
    • 2021
  • This paper presents the current-fed type LLC AC to DC high frequency resonant converter capable of ZVZCS(Zero-Voltage and Zero-Current Switching). The current-fed type LLC AC to DC high frequency resonant converter proposed in this paper could operate not only in ZVS(Zero-Voltage Switching) operation by connecting the resonant capacitors(C1, C2) in parallel across the switching devices but also in ZCS(Zero-Current Switching) operation of the secondary diode. The ZVS and ZCS operations can reduce the turn-on loss of the switching devices and the turn-off loss of the secondary diodes, respectively. The circuit analysis of current-fed type LLC AC to DC high frequency resonant converter proposed in this paper is addressed generally by adopting the normalized parameters. The operating characteristics of proposed LLC AC to DC high frequency resonant converter were also evaluated by using the normalized control parameters such as the normalized control frequency(μ), the normalized load resistor(λ) and so on. Based on the characteristic values through the characteristics of evaluation, an example of the design method of proposed LLC AC to DC high frequency resonant converter is suggested, and the validity of the theoretical analysis is confirmed using the experimental results and PSIM simulation.

Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets

  • Xi, Fei
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.65-79
    • /
    • 2022
  • The main goal of this paper is to study the vibration of damaged core laminated annular plates with FG face sheets based on a three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. In this study the effect of microcracks on the vibrational characteristic of the sandwich plate is considered. In particular, the structures are made by an isotropic core that undergoes a progressive uniform damage, which is modeled as a decay of the mechanical properties expressed in terms of engineering constants. These defects are uniformly distributed and affect the central layer of the plates independently from the direction, this phenomenon is known as "isotropic damage" and it is fully described by a scalar parameter. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular plate is assumed to have any arbitrary boundary conditions at the circular edges including simply supported, clamped and, free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution, and boundary conditions.

Comparative Analysis on the Performance of NHPP Software Reliability Model with Exponential Distribution Characteristics (지수분포 특성을 갖는 NHPP 소프트웨어 신뢰성 모형의 성능 비교 분석)

  • Park, Seung-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.641-648
    • /
    • 2022
  • In this study, the performance of the NHPP software reliability model with exponential distribution (Exponential Basic, Inverse Exponential, Lindley, Rayleigh) characteristics was comparatively analyzed, and based on this, the optimal reliability model was also presented. To analyze the software failure phenomenon, the failure time data collected during system operation was used, and the parameter estimation was solved by applying the maximum likelihood estimation method (MLE). Through various comparative analysis (mean square error analysis, true value predictive power analysis of average value function, strength function evaluation, and reliability evaluation applied with mission time), it was found that the Lindley model was an efficient model with the best performance. Through this study, the reliability performance of the distribution with the characteristic of the exponential form, which has no existing research case, was newly identified, and through this, basic design data that software developers could use in the initial stage can be presented.

Industrial application of WC-TiAlN nanocomposite films synthesized by cathodic arc ion plating system on PCB drill

  • Lee, Ho. Y.;Kyung. H. Nam;Joo. S. Yoon;Jeon. G. Han;Young. H. Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.3-3
    • /
    • 2001
  • Recently TiN, TiAlN, CrN hardcoatings have adapted many industrial application such as die, mold and cutting tools because of good wear resistant and thermal stability. However, in terms of high speed process, general hard coatings have been limited by oxidation and thermal hardness drop. Especially in the case of PCB drill, high speed cutting and without lubricant process condition have not adapted these coatings until now. Therefore more recently, superhard nanocomposite coating which have superhard and good thermal stability have developed. In previous works, WC-TiAlN new nanocomposite film was investigated by cathodic arc ion plating system. Control of AI concentration, WC-TiAlN multi layer composite coating with controlled microstructure was carried out and provides additional enhancement of mechanical properties as well as oxidation resistance at elevated temperature. It is noted that microhardness ofWC-TiA1N multi layer composite coating increased up to 50 Gpa and got thermal stability about $900^{\circ}C$. In this study WC-TiAlN nanocomposite coating was deposited on PCB drill for enhancement of life time. The parameter was A1 concentration and plasma cleaning time for edge sharpness maintaining. The characteristic of WC-TiAlN film formation and wear behaviors are discussed with data from AlES, XRD, EDS and SEM analysis. Through field test, enhancement of life time for PCB drill was measured.

  • PDF

Correlation Between Flexural Toughness and Cracking Characteristics of Micro-fiber Reinforced Mortar According to Fiber Contents (마이크로 섬유보강 모르타르의 휨 인성과 균열 특성의 상관관계)

  • Shin, Kyung-Joon;Jang, Kyu-Hyou;Kim, Eui Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.249-257
    • /
    • 2008
  • Various methods have been used to reinforce the cementitious material such as mortar and concrete that have weak tensile strength. Major reinforcing method is to mix matrix with fibers which have strong tensile strength. Recently, micro-fiber reinforced mortar has been studied which removes coarse aggregate and uses micro-fiber with small diameter in order to homogenize the matrix properties and maximize the performance of fiber. Performance of micro-fiber reinforced mortar showing multiple cracking behavior is hardly represented only by the flexural toughness. Therefore, This paper reports the cracking behavior as well as mechanical behavior for various mixtures which have different fiber type and mixture proportions to find the proper parameter representing the cracking characteristic. Correlations between flexural toughness and various cracking characteristics such as cracking area, width and number are explored. As a result, it is found that flexural toughness, volume of fiber and number of cracks are suitable for representing the characteristics of micro-fiber reinforced mortar.

Development of Axially Periodic Transient Storage Zone Model for the Solute Mixing in Natural Streams and Rivers with Various Bottom Boundaries (하상변화가 있는 자연하천에서의 오염물질 거동해석을 위한 주기적저장대모형 개발)

  • Cheeong, Tae Sung;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.623-631
    • /
    • 2006
  • A new model, the periodic transient storage zone model, is developed to describe solute transport mixing in natural streams and rivers with various bottom boundaries. To assess the effects of storage zones structure on transient storage exchange, we analyze data from salt and dye injection experiments in a recirculating laboratory flume with four spatially periodic pool-riffle sequences characteristic of natural river systems under low flow conditions. Dye injections show that solute transport mixing controlled by surface shapes of both the bed and the side in channels. As no existing transient storage model could represent these effects, we developed a new axially periodic transient storage zone model that better represent the effects of channel characteristics in natural river systems. The new model is also fitted to data from salt tracer injection experiments in four reaches of the upper Sabin River, Texas, USA. The proposed model is in good agreement with the field experimental data.

Runoff Analysis Based on Rainfall Estimation Using Weather Radar (기상레이더 강우량 산정법을 이용한 유출해석)

  • Kim, Jin Geuk;Ahn, Sang Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.7-14
    • /
    • 2006
  • The radar relationship was estimated for the selected rainfall event at Yeongchun station within Chungjudam basin where the discharge record was the range of from 1,000 CMS to 9,000 CMS. By calibrating the rainfall coefficient parameter estimated by radar relationship in small hydrology basin, rainfall with the topography properties was calculated. Three different rainfall estimation methods were compared:(1) radar relationship method (2) Thiessen method (3) Isohyetal method (4) Inverse distance method. Basin model was built by applying HEC-GeoHMS which uses digital elevation model to extract hydrological characteristic and generate river network. The proposed basin model was used as an input to HEC-HMS to build a runoff model. The runoff estimation model applying radar data showed the good result. It is proposed that the radar data would produce more rapid and accurate runoff forecasting especially in the case of the partially concentrated rainfall due to the atmospheric change. The proposed radar relationship could efficiently estimate the rainfall on the study area(Chungjudam basin).

Characterization of the wind-induced response of a 356 m high guyed mast based on field measurements

  • Zhe Wang;Muguang Liu;Lei Qiao;Hongyan Luo;Chunsheng Zhang;Zhuangning Xie
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.215-229
    • /
    • 2024
  • Guyed mast structures exhibit characteristics such as high flexibility, low mass, small damping ratio, and large aspect ratio, leading to a complex wind-induced vibration response mechanism. This study analyzed the time- and frequency-domain characteristics of the wind-induced response of a guyed mast structure using measured acceleration response data obtained from the Shenzhen Meteorological Gradient Tower (SZMGT). Firstly, 734 sets of 1-hour acceleration samples measured from 0:00 October 1, 2021, to 0:00 November 1, 2021, were selected to study the vibration shapes of the mast and the characteristics of the generalized extreme value (GEV) distribution. Secondly, six sets of typical samples with different vibration intensities were further selected to explore the Gaussian property and modal parameter characteristics of the mast. Finally, the modal parameters of the SZMGT are identified and the identification results are verified by finite element analysis. The findings revealed that the guyed mast vibration shape exhibits remarkable diversity, which increases nonlinearly along the height in most cases and reaches a maximum at the top of the tower. Moreover, the GEV distribution characteristics of the 734 sets of samples are closer to the Weibull distribution. The probability distribution of the structural wind vibration response under strong wind is in good agreement with the Gaussian distribution. The structural response of the mast under wind loading exhibits multiple modes. As the structural response escalates, the first three orders of modal energy in the tower display a gradual increase in proportion.

Quantitative Analysis of Digital Radiography Pixel Values to absorbed Energy of Detector based on the X-Ray Energy Spectrum Model (X선 스펙트럼 모델을 이용한 DR 화소값과 디텍터 흡수에너지의 관계에 대한 정량적 분석)

  • Kim Do-Il;Kim Sung-Hyun;Ho Dong-Su;Choe Bo-young;Suh Tae-Suk;Lee Jae-Mun;Lee Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.202-209
    • /
    • 2004
  • Flat panel based digital radiography (DR) systems have recently become useful and important in the field of diagnostic radiology. For DRs with amorphous silicon photosensors, CsI(TI) is normally used as the scintillator, which produces visible light corresponding to the absorbed radiation energy. The visible light photons are converted into electric signal in the amorphous silicon photodiodes which constitute a two dimensional array. In order to produce good quality images, detailed behaviors of DR detectors to radiation must be studied. The relationship between air exposure and the DR outputs has been investigated in many studies. But this relationship was investigated under the condition of the fixed tube voltage. In this study, we investigated the relationship between the DR outputs and X-ray in terms of the absorbed energy in the detector rather than the air exposure using SPEC-l8, an X-ray energy spectrum model. Measured exposure was compared with calculated exposure for obtaining the inherent filtration that is a important input variable of SPEC-l8. The absorbed energy in the detector was calculated using algorithm of calculating the absorbed energy in the material and pixel values of real images under various conditions was obtained. The characteristic curve was obtained using the relationship of two parameter and the results were verified using phantoms made of water and aluminum. The pixel values of the phantom image were estimated and compared with the characteristic curve under various conditions. It was found that the relationship between the DR outputs and the absorbed energy in the detector was almost linear. In a experiment using the phantoms, the estimated pixel values agreed with the characteristic curve, although the effect of scattered photons introduced some errors. However, effect of a scattered X-ray must be studied because it was not included in the calculation algorithm. The result of this study can provide useful information about a pre-processing of digital radiography.

  • PDF