• Title/Summary/Keyword: Characteristic Factor of Safety

Search Result 131, Processing Time 0.021 seconds

A Study on the Examination of Explosion Hazardous Area Applying Ventilation and Dilution (환기 및 희석을 적용한 폭발위험장소 검토에 관한 연구)

  • kim, Nam Suk;Lim, Jae Geun;Woo, In Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.27-31
    • /
    • 2018
  • Classification of explosion hazard areas is very important in terms of cost and safety in the workplace handling flammable materials. This is because the radius of the hazardous area determines whether or not the explosion-proof equipment is installed in the electrical machinery and apparatus. From November 6, 2017, KS C IEC-60079-10-1: 2015 will be issued and applied as a new standard. It is important to understand and apply the difference between the existing standard and the new standard. Leakage coefficients and compression factors were added to the leakage calculation formula, and the formula of evaporation pool leakage, application of leakage ball size, and shape of explosion hazard area were applied. The range of the safety factor K has also been changed. Also, in the radius of the hazardous area, the existing standard applies the number of ventilation to the virtual volume, but the revised standard is calculated by using the leakage characteristic value. In this study, we investigated the differences from existing standards in terms of ventilation and dilution and examined the effect on the radius of the hazard area. Comparisons and analyzes were carried out by applying revised standards to workplaces where existing explosion hazard locations were selected. The results showed that even if the ventilation and dilution were successful, the risk radius was not substantially affected.

Assessment of Internal Radiation Dose Due to Inhalation of Particles by Workers in Coal-Fired Power Plants in Korea (국내 석탄화력발전소 내 작업종사자의 입자 흡입에 따른 내부피폭 방사선량 평가)

  • Do Yeon Lee;Yong Ho Jin;Min Woo Kwak;Ji Woo Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.161-172
    • /
    • 2023
  • Coal-fired power plants handle large quantities of coal, one of the most prominent NORM, and the coal ash produced after the coal is burned can be tens of times more radioactive than the coal. Workers in these industries may be exposed to internal exposure by inhalation of particles while handling NORM. This study evaluated the size, concentration, particle shape and density, and radioactivity concentrations of airborne suspended particles in the main processes of a coal-fired power plant. Finally, the internal radiation dose to workers from particle inhalation was evaluated. For this purpose, airborne particles were collected by size using a multi-stage particle collector to determine the size, shape, and concentration of particles. Samples of coal and coal ash were collected to measure the density and radioactivity of particles. The dose conversion factor and annual radionuclide inhalation amount were derived based on the characteristics of the particles. Finally, the internal radiation dose due to particle inhalation was evaluated. Overall, the internal radiation dose to workers in the main processes of coalfired power plants A and B ranged from 1.47×10-5~1.12×10-3 mSv y-1. Due to the effect of dust generated during loading operations, the internal radiation dose of fly ash loading processes in both coal-fired power plants A and B was higher than that of other processes. In the case of workers in the coal storage yard at power plants A and B, the characteristic values such as particle size, airborne concentration, and working time were the same, but due to the difference in radioactivity concentration and density depending on the origin of the coal, the internal radiation dose by origin was different, and the highest was found when inhaling coal imported from Australia among the five origins. In addition, the main nuclide contributing the most to the internal radiation dose from the main processes in the coal-fired power plants was thorium due to differences in dose conversion factors. However, considering the external radiation dose of workers in coal-fired power plants presented in overseas research cases, the annual effective dose of workers in the main processes of power plants A and B does not exceed 1mSv y-1, which is the dose limit for the general public notified by the Nuclear Safety Act. The results of this study can be utilized to identify the internal exposure levels of workers in domestic coal-fired power plants and will contribute to the establishment of a data base for a differential safety management system for NORM-handling industries in the future.

Infiltration and Stability Analysis Using Double Modal Water Retention Curves for Unsaturated Slopes in Pohang (이중모드 함수특성곡선을 이용한 포항 산사태에 대한 불포화 비탈면의 침투 및 안정해석)

  • Oh, Seboong;Jang, Junhyuk;Yoon, Seokyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.695-705
    • /
    • 2024
  • As a result of Typhoon Hinnamnoh, several slope failures occurred in the Pohang region, it is necessary to perform infiltration and slope stability analyses due to the actual rainfall. In the failed sites, samples were collected, and the hydro-mechanical properties of unsaturated soil were examined. Modeling the actual behavior using a single-mode function characteristic curve was found to be inadequate, leading to the adoption of a dual-mode function characteristic curve. The dual-mode function showed better agreement with the water retention test data. We calculated the unsaturated hydraulic conductivity for single and dual modes and performed rainfall-induced infiltration analysis. The variations in saturation and pore water pressure were calculated due to rainfall for three landslide-prone areas, Stability analysis based on effective stress of unsaturated soil was conducted, and safety factors were computed over time steps. The dual-mode model successfully reproduced landslides triggered by Typhoon Hinnamnoh, while the single-mode model exhibited a minimum safety factor of 1.2-1.3, making slope failure unpredictable. The dual-mode model accurately predicted instability in the slope by appropriately accounting for pore water pressure variations during Typhoon.

Reliability Analysis of Plane Stress Element According to Limit State Equations (한계상태방정식에 따른 평면응력요소의 신뢰성해석)

  • Park, Seok Jae;Choi, Wae Ho;Kim, Yo Suk;Shin, Yeong-Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.567-575
    • /
    • 2001
  • In order to consider statistical properties of probability variables used in the structural analysis the conventional approach using the safety factor based on past experience usually estimated the safety of a structure Also the real structures could only be analyzed with the error in estimation of loads material characters and the dimensions of the members. But the errors should be considered systematically in the structural analysis Safety of structure could not precisely be appraised by the traditional structural design concept Recently new aproach based on the probability concept has been applied to the assessment of structural safety using the reliability concept Thus the computer program by the Probabilitstic FEM is developed by incorporating the probabilistic concept into the conventional FEM method. This paper estimated for the reliability of a plane stress structure by Advanced First-Order Second Moment method using von Mises, Tresca and Mohr-Coulomb failure criterions. Verification of the reliability index and failure probability of attained by the Monte Carlo Simulation method with the von Mises criterion were same as PFEM, but the Monte Carlo Simulation were very time-consuming. The variance of member thickness and load could influence the reliability and failure probability most sensitively among the design variables from the results of the parameter analysis. The proper failure criterion according to characteristic of materials must be used for safe design.

  • PDF

Effect of Lycopene on the Insulin-like Growth Factor-I Receptor Signaling Pathway in Human Colon Cancer HT-29 Cells (인간의 대장암 HT-29 세포주에서 라이코펜이 Insulin-like Growth Factor-I Receptor Signaling Pathway에 미치는 영향)

  • ;;;Frederick Khachik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.437-443
    • /
    • 2003
  • Epidemiological data suggest that lycopene has anticancer activities in humans. Insulin-like growth factor-I receptor (IGF-IR) is a transmembrane tyrosine kinase that mediates the biological actions of IGFs and may play an active role in cancer progression. Because our previous in vitro studies have indicated lycopene inhibits HT-29 cell growth, the aim of this study was to determine whether lycopene induces apoptotic cell death and the inhibitory effect of lycopene on HT-29 cell growth is related to changes in IGF-IR levels and the receptor's intracellular signalling pathways. HT-29 cells were incubated for 4 days in serum-free medium in the presence of 0, 25, 50, or 100 $\mu$M lycopene, and the DNA fragmentation assay was performed. Cells treated with lycopene produced a distinct oligonucleosomal ladder with different sizes of DNA fragments, a typical characteristic of cells undergoing apoptosis. HT-29 cells were cultured for 4 days in serum-free medium in the presence of 0~100 $\mu$M lycopene and IGF-I (10nM) was added for 0~60 minutes immediately prior to lysate preparations. Western blot analysis of total lysates revealed that lycopene decreased the levels of IRS-1, Akt, phosphatidylinositol 3-kinase (PI3K), and IGF-IR $\beta$-subunit, and increased the levels of the IGF-IR precursor dose dependently. Lycopene also decreased IGF-I-induced phosphorylation of IGF-IR$\beta$, IRS-1 and Akt, which were, at least in part, due to decreased expression of these proteins. These results suggest that lycopene induces apoptosis of HT-29 cells by inhibiting IGF-IR signaling thereby interfering with an IGF-II-driven autocrine growth loop, which is known to exist in this cell line.

Slope Stability by Variation of Rainfall Characteristic for Long Period (장기간 강우특성 변화에 따른 국내 사면의 안정성)

  • Lee, Jeong-Ju;Kim, Jae-Hong;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.51-59
    • /
    • 2014
  • Shallow landslides and debris flows are a common form of soil slope instability in South Korea. These events may be generally initiated as a result of intense rainfall or lengthening rainfall duration because of the effects of climate change. This paper presents the evaluation of rainfall-induced natural soil slope stability and reinforced soil slope instability under vertical load (railway or highway load) throughout South Korea based on quantitative analysis obtained from 58 sites rainfall observatories for 38 years. The slope stability was performed for infinite and geogrid-reinforced soil slopes by taking an average of maximum rainfall every ten years from 1973 to 2010. Seepage analysis is carried out on unsaturated soil slope using the maximum rainfall at each site, and then the factor of safety was calculated by coupled analysis using saturated and unsaturated strength parameters. The contour map of South Korea shows four stages in 10-year-time for the degree of landslide hazard. The safety factor map based on long term observational data will help prevent rainfall-induced soil slope instability for appropriate design of geotechnical structures regarding disaster protection.

Object Detection Algorithm Using Edge Information on the Sea Environment (해양 환경에서 에지 정보를 이용한 물표 추출 알고리즘)

  • Jeong, Jong-Myeon;Park, Gyei-Kark
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.69-76
    • /
    • 2011
  • According to the related reports, about 60 percents of ship collisions have resulted from operating mistake caused by human factor. Specially, the report said that negligence of observation caused 66.8 percents of the accidents due to a human factor. Hence automatic detection and tracking of an object from an IR images are crucial for safety navigation because it can relieve officer's burden and remedies imperfections of human visual system. In this paper, we present a method to detect an object such as ship, rock and buoy from a sea IR image. Most edge directions of the sea image are horizontal and most vertical edges come out from the object areas. The presented method uses them as a characteristic for the object detection. Vertical edges are extracted from the input image and isolated edges are eliminated. Then morphological closing operation is performed on the vertical edges. This caused vertical edges that actually compose an object be connected and become an object candidate region. Next, reference object regions are extracted using horizontal edges, which appear on the boundaries between surface of the sea and the objects. Finally, object regions are acquired by sequentially integrating reference region and object candidate regions.

A Study on the Field Application of the Measurement Technique for Static Displacement of Bridge Using Ambient Vibration (상시 진동을 이용한 교량 정적 처짐 산정 기술의 현장 적용성 연구)

  • Sang-Hyuk Oh;Dae-Joong Moon;Kwang-Myong Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In safety assessment of a aged bridge, dynamic characteristics and displacement are directly related to the rigidity of the structural system, especially displacement is the most important factor as the physical quantity that the bridge user can directly detect. However, in order to measure the displacement of the bridge, it is difficult to install displacement sensors at the bottom of the bridge and conduct traffic blocking and loading tests, resulting in increased costs or impossible measurements depending on the bridge's environment. In this study, a method of measuring the displacement of a bridge using only accelerometers without installing displacement sensors and ambient vibration without a loading test was proposed. For the analysis of bridge dynamic characteristics and displacement using ambient vibration, the mode shape and natural frequency of the bridge were extracted using a TDD technique known to enable quick analysis with simple calculations, and the unit load displacement of the bridge was analyzed through flexibility analysis to calculate static displacement. To verify this proposed technology, an on-site test was conducted on C Bridge, and the results were compared with the measured values of the loading test and the structural analysis data. As a result, it was confirmed that the mode shape and natural frequency were 0.42 to 1.13 % error ratio, and the maximum displacement at the main span was 3.58 % error ratio. Therefore, the proposed technology can be used as a basis data for indirectly determine the safety of the bridge by comparing the amount of displacement compared to the design and analysis values by estimating the displacement of the bridge that could not be measured due to the difficulty of installing displacement sensors.

Study on the Atmospheric Plasma Characteristics of Dielectric Barrier Discharge due to a Variation of the Duty Ratio of Pulse Modulation (펄스변조의 듀티비 변경에 따른 DBD 대기압 플라즈마 특성 연구)

  • Park, Jong-in;Hwang, Sang-hyuk;Jo, Tae Hoon;Yun, Myoung Soo;Kwak, Hyoung sin;Jin, Gi nam;Jeon, Buil;Choi, Eun Ha;Kwon, Gi-Chung
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.616-621
    • /
    • 2015
  • Atmospheric pressure plasma is used in the biological and medical fields. Miniaturization and safety are important in the application of apply atmospheric plasma to bio devices. In this study, we made a small, pocket-sized inverter for the discharge of atmospheric plasma. We used pulse power to control the neutral gas temperature at which the, when plasma was discharged. We used direct current of 5 V of bias(voltage). The output voltage is about 1 to 2 kilo volts the frequency is about 80 kilo hertz. We analyzsed the characteristics of the atmospheric plasma using OES(Optical emission spectroscopy) and the Current-Voltage characteristic of pulse power. By calculating of the current voltage characteristics, we were able to determine that, when the duty ratio increased, the power that actually effects the plasma discharge also increased. To apply atmospheric plasma to human organisms, the temperature is the most important factor, we were able to control the temperature by modulating the pulse power duty ratio. This means we can use atmospheric plasma on the human body or in other areas of the medical field.

Air Leakage Analysis of Research Reactor HANARO Building in Typhoon Condition for the Nuclear Emergency Preparedness

  • Lee, Goanyup;Lee, Haecho;Kim, Bongseok;Kim, Jongsoo;Choi, Pyungkyu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.354-358
    • /
    • 2016
  • Background: To find out the leak characteristic of research reactor 'HANARO' building in a typhoon condition Materials and Methods: MELCOR code which normally is used to simulate severe accident behavior in a nuclear power plant was used to simulate the leak rate of air and fission products from reactor hall after the shutdown of the ventilation system of HANARO reactor building. For the simulation, HANARO building was designed by MELCOR code and typhoon condition passed through Daejeon in 2012 was applied. Results and Discussion: It was found that the leak rate is $0.1%{\cdot}day^{-1}$ of air, $0.004%{\cdot}day^{-1}$ of noble gas and $3.7{\times}10^{-5}%{\cdot}day^{-1}$ of aerosol during typhoon passing. The air leak rate of $0.1%{\cdot}day^{-1}$ can be converted into $1.36m^3{\cdot}hr^{-1}$, but the design leak rate in HANARO safety analysis report was considered as $600m^3{\cdot}hr^{-1}$ under the condition of $20m{\cdot}sec^{-1}$ wind speed outside of the building by typhoon. Conclusion: Most of fission products during the maximum hypothesis accident at HANARO reactor will be contained in the reactor hall, so the direct radiation by remained fission products in the reactor hall will be the most important factor in designing emergency preparedness for HANARO reactor.