• Title/Summary/Keyword: Characteristic Equation

Search Result 949, Processing Time 0.031 seconds

Time-domain Approaches for Input Disturbance Observer

  • Kim, Kyung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.22-25
    • /
    • 2005
  • In the paper, algorithms for disturbance observers are newly presented in the time-domain. Attention is paid to observing a ramp disturbance by introducing an integral term to the output equation of a constant disturbance observer. In order to reduce the sensitivity to the measurement noise, the disturbance observer is combined with the state observer. It will be shown that the estimation dynamics can be arbitrarily chosen by assigning the eigenvalues of a characteristic equation. Also, we provide the analysis of observer behaviors subject to non-ramp-style disturbances. Finally, we propose the generalized disturbance observer that accurately estimates disturbances of higher order in time series expansion.

  • PDF

The Inductance calculation of Compulsator (보상 펄스 발전기의 인덕턴스 계산)

  • Kim Myung-Bok;Kim Hag-Wone;Kim Geon-Su;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.648-652
    • /
    • 2002
  • This paper presents the inductance calculation of compulsator by obtaining the solution of Laplace equation. Since the characteristic of material of compulsator makes the boundary conditions changed, this method is useful for various materials of compulsator

  • PDF

Vibration Damping Analysis of Multi-Layered Viscoelastic Material (다층 점탄성재료의 진동감쇠 특성에 관한 연구)

  • 윤영식;황동환;이상조
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.487-496
    • /
    • 1994
  • Recently, the application of viscoelastic material in the field of vibration isolation has gradually increased due to its achievement in structural damping capacity, and many of the theoretical and experimental study has been carried out. In this study, the dynamic characteristics of the visoelastically supported cantilever beam, of which govering equation is based on the Bernoulli- Euler equation, is analyzed theoretically and experimentally. Expression for stiffness of multi-layered viscoelastic materal has been developed using variables such as frequency and number of layers, and further, based on this expression, damping characteristic of the beam is investigated with experimental verification.

  • PDF

Nonlinear aerodynamic stability analysis of orthotropic membrane structures with large amplitude

  • Zheng, Zhoulian;Xu, Yunping;Liu, Changjiang;He, Xiaoting;Song, Weiju
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.401-413
    • /
    • 2011
  • The aerodynamic stability of orthotropic tensioned membrane structures with rectangular plane is theoretically studied under the uniform ideal potential flow. The aerodynamic force acting on the membrane surface is determined by the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics. Then, based on the large amplitude theory and the D'Alembert's principle, the interaction governing equation of wind-structure is established. Under the circumstances of single mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction equation into a system of second order nonlinear differential equation with constant coefficients. Through judging the stability of the system characteristic equation, the critical divergence instability wind velocity is determined. Finally, from different parametric analysis, we can conclude that it has positive significance to consider the characteristics of orthotropic and large amplitude for preventing the instability destruction of structures.

On the eigenvalues of a uniform rectangular plate carrying any number of spring-damper-mass systems

  • Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.341-360
    • /
    • 2003
  • The goal of this paper is to determine the eigenvalues of a uniform rectangular plate carrying any number of spring-damper-mass systems using an analytical-and-numerical-combined method (ANCM). To this end, a technique was presented to replace each "spring-damper-mass" system by a massless equivalent "spring-damper" system with the specified effective spring constant and effective damping coefficient. Then, the mode superposition approach was used to transform the partial differential equation of motion into the matrix equation, and the eigenvalues of the complete system were determined from the associated characteristic equation. To verify the reliability of the presented theory, all numerical results obtained from the ANCM were compared with those obtained from the conventional finite element method (FEM) and good agreement was achieved. Since the order of the property matrices for the equation of motion obtained from the ANCM is much lower than that obtained from the FEM, the CPU time required by the ANCM is much less than that by the FEM.

Turbulent flow fields analysis using CFDS scheme (CFDS기법을 이용한 난류 유동장 해석)

  • Moon S. M.;Lee J. S.;Kim C.;Rho O. H.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.51-59
    • /
    • 2001
  • An evaluation of one zero-equation and two one-equation eddy viscosity-transport turbulence closure models as implemented CFDS(Characteristic Flux Difference Splitting ) code is presented herein. Comparisons of Baldwin-Lomax model as zero-equation and Baldwin-Barth and Spalart-Allmaras model as one-equation are presented for three test cases, first inlvolving the 3 dimensional supersonic flow at M=1.98 over tangent ogive cylinder, second involving the 2 dimensional transonic flow at M=0.79 over RAE 2822 airfoil, third involving the 3 dimensional transonic flow at M=0.84 over ONERA M6 wing. The numerical results of CFDS code will also examined through direct comparison with experimental data.

  • PDF

A Simulation of Flame-Vortex Interaction considering the Alteration of Vortex by Flame (와동의 변화를 고려한 화염-와동 상호 작용 모사)

  • Kang, Ji-Hoon;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.189-196
    • /
    • 2000
  • A numerical simulation was conducted to analyze the interaction of flame and vortices. The characteristic scales of flame and vortices were limited in the thin laminar flamelet regime. Within this regime, flame is assumed as discontinuity surface and its motion in flow field was described by G-equation instead of full governing equations. Additional approximations include distribution of line volume sources on flame surface to simulate effect of volume expansion. Contrast to previous calculations, current study employed vortex transport equation to evaluate attenuation and smearing of vortices. Two extreme conditions of frozen vortex and frozen flame were considered to validate the current method. Comparison with direct numerical simulation resulted in satisfactory quantitative agreement with higher computational efficiency which warrants the usefulness of the present model in more complex situation.

  • PDF

Performance Characteristics of Tubular Linear Iduction Motor (동기형 직선유도전동기의 동작특성)

  • Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.3
    • /
    • pp.153-162
    • /
    • 1987
  • The purpose of this paper is to analysis and develop theoretically the characteristics of tubular linear induction motor, which is a special industrial motor that generates directly thrust force from electrical power. The Poisson equation about vector potential which is created by the application of Maxwell electromagnetic equation with the speed considered, results in modified Bessel equation by the assumption that is applied to each region of the experimental motor. Vector potential, magnetic flux density, secondary current, and thrust force according to its region respectively were found out by substituting boundary condition for this equation and rearranging. Besides, a attendant materials, that is, thermal characteristic, which is one of the characteristics under the operation of experimental motor each part's magnetic flux distribution characteristics within active zone, the required time for reciprocating motion, and variation of power factor vs. a slip were found.

  • PDF

ON STABILITY AND BIFURCATION OF PERIODIC SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS

  • EL-SHEIKH M. M. A.;EL-MAHROUF S. A. A.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.281-295
    • /
    • 2005
  • The purpose of this paper is to study a class of delay differential equations with two delays. First, we consider the existence of periodic solutions for some delay differential equations. Second, we investigate the local stability of the zero solution of the equation by analyzing the corresponding characteristic equation of the linearized equation. The exponential stability of a perturbed delay differential system with a bounded lag is studied. Finally, by choosing one of the delays as a bifurcation parameter, we show that the equation exhibits Hopf and saddle-node bifurcations.

The study of electron transport coefficients in pure $CO_2$ by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 $CO_2$분자가스의 전자수송계수의 해석)

  • Jeon, Byung-Hoon;Kim, Ji-Yeon;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.164-167
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure $CO_2$ were calculated over the wide E/N range from 0.01 to 500 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of $CO_2$ molecular gas. And for propriety of two-term approximation of Boltzmann equation analysis, the calculated results compared with the electron transport coefficients measured by Nakamura.

  • PDF