• 제목/요약/키워드: Character Recognition Technology

검색결과 208건 처리시간 0.033초

이미지 인식 기반 향상된 개인정보 식별 및 마스킹 시스템 설계 및 구현 (Design and Implementation of Personal Information Identification and Masking System Based on Image Recognition)

  • 박석천
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.1-8
    • /
    • 2017
  • 최근 클라우드, 모바일 등 ICT 기술의 발전으로 소셜 네트워크를 통한 이미지 활용이 급증하고 있다. 이러한 이미지는 개인정보가 포함되어 있어, 개인정보 유출 사고가 발생될 수 있다. 이에 이미지에서 개인정보를 인식하고 마스킹하는 연구가 진행되고 있다. 그러나 기존 이미지에서 개인정보를 인식 하는 방법인 광학 문자 인식은 이미지의 밝기, 명암, 왜곡에 따라 인식률의 변화가 심하여 한글 인식이 미흡한 문제가 있다. 따라서 본 논문에서는 광학 문자 인식 방법을 기반으로 CNN 알고리즘에 딥러닝을 적용하여 이미지 인식 기반 향상된 개인정보 식별 및 마스킹 시스템을 설계 및 구현하였다. 또한 구현된 제안 시스템을 동일한 이미지를 가지고 광학 문자 인식과 개인정보 인식률을 비교평가를 진행하고, 제안 시스템의 얼굴 인식률을 측정하였다. 테스트 결과 제안 시스템의 개인정보 인식률은 광학 문자인식에 비해 32.7% 향상되었으며 얼굴 인식률은 86.6%로 확인되었다.

딥러닝 기반 OCR 인식 엔진의 정확도 향상을 위한 전/후처리기 기술 구현 (Implementation of Pre-Post Process for Accuraty Improvement of OCR Recognition Engine Based on Deep-Learning Technology)

  • 장창복;김기봉
    • 융합정보논문지
    • /
    • 제12권1호
    • /
    • pp.163-170
    • /
    • 2022
  • 4차산업 혁명이 도래함에 따라 AI 기술을 적용하는 솔루션 개발이 활발하게 이루어지고 있다. 2017년도부터 금융권, 보험사를 중심으로 AI 기반 RPA(Robotic Process Automation)을 이용한 업무 자동화 솔루션 도입이 이루어지기 시작했으며, 최근에는 RPA 솔루션 도입 단계를 지나 확산하는 시기로 진입하고 있다. 이러한 RPA 솔루션을 이용한 업무 자동화 중에서 각 종 문서들을 이용한 업무 자동화에는 문서내의 문자 정보를 얼마나 정확하게 인식하는지가 매우 중요하다. 이러한 문자 인식은 최근 딥러닝 기술을 도입함으로써 그 정확도가 많이 높아졌지만, 여전히 완벽한 인식 정확도 갖는 인식 모델은 존재하지 않는다. 따라서, 본 논문에서는 딥러닝 기반 문자 인식 엔진에 전/후 처리기 기술을 적용할 경우 얼마나 정확도가 향상되는지를 확인하고 RPA 인식 엔진과 연계 기술을 구현하였다.

영상처리기술을 이용한 핵 연료봉 문자 자동인식시스템 개발 (Development of Automatic Nuclear Fuel Rod Character Recognition System Based on Image Processing Technique)

  • Woong Ki Kim;Yong Bum Lee;Jong Min Lee;Sung IL Chien
    • Nuclear Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.424-429
    • /
    • 1993
  • 핵연료 소결체가 장전되는 핵연료봉의 끝부분에는 각각의 핵연료봉을 구분해주는 고유의 문자가 인쇄되어 있다. 핵연료 집합체 제조 과정에서 각각의 핵연료봉은 고유 문자에 의해 구분되어 체계적으로 관리되고 있으며 아울러 핵연료 연소 이상상태 감시 및 사용후 핵연료 검사 분야에서 핵연료봉 제조과정 추적에 이용되고 있다. 핵연료봉 문자 자동인식은 핵연료 집합체 제조과정의 자동화를 위한 핵심 기술이다. 본 연구에서는 핵연료봉 문자인식 시스템을 개발하여, 핵 연료봉단에 기록된 각 문자로 부터 추출한 메쉬 특징값을 데이타베이스에 저장된 특정 문자의 특징값과 비교하여 자동으로 문자인식을 수행하도록 하였다. 실험 결과, 95.83 퍼센트의 양호한 인식률을 기록하였다.

  • PDF

A Contour Descriptors-Based Generalized Scheme for Handwritten Odia Numerals Recognition

  • Mishra, Tusar Kanti;Majhi, Banshidhar;Dash, Ratnakar
    • Journal of Information Processing Systems
    • /
    • 제13권1호
    • /
    • pp.174-183
    • /
    • 2017
  • In this paper, we propose a novel feature for recognizing handwritten Odia numerals. By using polygonal approximation, each numeral is segmented into segments of equal pixel counts where the centroid of the character is kept as the origin. Three primitive contour features namely, distance (l), angle (${\theta}$), and arc-tochord ratio (r), are extracted from these segments. These features are used in a neural classifier so that the numerals are recognized. Other existing features are also considered for being recognized in the neural classifier, in order to perform a comparative analysis. We carried out a simulation on a large data set and conducted a comparative analysis with other features with respect to recognition accuracy and time requirements. Furthermore, we also applied the feature to the numeral recognition of two other languages-Bangla and English. In general, we observed that our proposed contour features outperform other schemes.

골격을 이용한 문자 인식을 위한 지역경계 연산 (Regional Boundary Operation for Character Recognition Using Skeleton)

  • 유석원
    • 문화기술의 융합
    • /
    • 제4권4호
    • /
    • pp.361-366
    • /
    • 2018
  • 학습 데이터를 구성하는 각각의 문자들에 대해 서로 다른 글자체들을 픽셀 단위로 더해서 MASK를 만들고, 해당 MASK에 속하는 픽셀값들을 세 영역으로 나눈다. 실험 데이터를 골격 형태로 수정하고, 지역 경계 연산을 사용하여 수정된 실험 데이터의 배경 중에서 문자의 골격에 인접한 배경 영역을 구분하는 경계를 만든다. 수정된 실험 데이터와 MASK들 간의 불일치 정도를 계산해서 최소값을 가지는 MASK를 찾는다. 이 MASK가 해당 실험 데이터에 대해 최종적으로 인식된 학습 데이터 문자로 선택된다. 문자의 골격과 지역 경계 연산을 사용하는 인식법은 주어진 학습 데이터에 새로운 글자체를 추가해서 학습 데이터를 쉽게 확장할 수 있으며, 구현하기가 간단하면서도 높은 문자 인식률을 얻을 수 있다.

Smart Phone Road Signs Recognition Model Using Image Segmentation Algorithm

  • Huang, Ying;Song, Jeong-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.887-890
    • /
    • 2012
  • Image recognition is one of the most important research directions of pattern recognition. Image based road automatic identification technology is widely used in current society, the intelligence has become the trend of the times. This paper studied the image segmentation algorithm theory and its application in road signs recognition system. With the help of image processing technique, respectively, on road signs automatic recognition algorithm of three main parts, namely, image segmentation, character segmentation, image and character recognition, made a systematic study and algorithm. The experimental results show that: the image segmentation algorithm to establish road signs recognition model, can make effective use of smart phone system and application.

  • PDF

가상 데이터를 활용한 번호판 문자 인식 및 차종 인식 시스템 제안 (Proposal for License Plate Recognition Using Synthetic Data and Vehicle Type Recognition System)

  • 이승주;박구만
    • 방송공학회논문지
    • /
    • 제25권5호
    • /
    • pp.776-788
    • /
    • 2020
  • 본 논문에서는 딥러닝을 이용한 차종 인식과 자동차 번호판 문자 인식 시스템을 제안한다. 기존 시스템에서는 영상처리를 통한 번호판 영역 추출과 DNN을 이용한 문자 인식 방법을 사용하였다. 이러한 시스템은 환경이 변화되면 인식률이 하락되는 문제가 있다. 따라서, 제안하는 시스템은 실시간 검출과 환경 변화에 따른 정확도 하락에 초점을 맞춰 1-stage 객체 검출 방법인 YOLO v3를 사용하였으며, RGB 카메라 한 대로 실시간 차종 및 번호판 문자 인식이 가능하다. 학습데이터는 차종 인식과 자동차 번호판 영역 검출의 경우 실제 데이터를 사용하며, 자동차 번호판 문자 인식의 경우 가상 데이터만을 사용하였다. 각 모듈별 정확도는 차종 검출은 96.39%, 번호판 검출은 99.94%, 번호판 검출은 79.06%를 기록하였다. 이외에도 YOLO v3의 경량화 네트워크인 YOLO v3 tiny를 이용하여 정확도를 측정하였다.

Optical Character Recognition for Hindi Language Using a Neural-network Approach

  • Yadav, Divakar;Sanchez-Cuadrado, Sonia;Morato, Jorge
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.117-140
    • /
    • 2013
  • Hindi is the most widely spoken language in India, with more than 300 million speakers. As there is no separation between the characters of texts written in Hindi as there is in English, the Optical Character Recognition (OCR) systems developed for the Hindi language carry a very poor recognition rate. In this paper we propose an OCR for printed Hindi text in Devanagari script, using Artificial Neural Network (ANN), which improves its efficiency. One of the major reasons for the poor recognition rate is error in character segmentation. The presence of touching characters in the scanned documents further complicates the segmentation process, creating a major problem when designing an effective character segmentation technique. Preprocessing, character segmentation, feature extraction, and finally, classification and recognition are the major steps which are followed by a general OCR. The preprocessing tasks considered in the paper are conversion of gray scaled images to binary images, image rectification, and segmentation of the document's textual contents into paragraphs, lines, words, and then at the level of basic symbols. The basic symbols, obtained as the fundamental unit from the segmentation process, are recognized by the neural classifier. In this work, three feature extraction techniques-: histogram of projection based on mean distance, histogram of projection based on pixel value, and vertical zero crossing, have been used to improve the rate of recognition. These feature extraction techniques are powerful enough to extract features of even distorted characters/symbols. For development of the neural classifier, a back-propagation neural network with two hidden layers is used. The classifier is trained and tested for printed Hindi texts. A performance of approximately 90% correct recognition rate is achieved.

Reconstruction of Overlapping Character in Thai Printed Documents

  • Nucharee Pemchaiswa;Wichian Premchaiswadi;Voravit Premratanachai;Seinosuke Narita
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.31-34
    • /
    • 2000
  • This paper proposes a reconstruction scheme for overlapping characters in Thai printed document. Overlapping characters are characters that overlap with surrounding characters. The problem of overlapping characters is still an unsolved problem In commercially available software of Thai character recognition systems. The algorithm of reconstruction scheme is based on structural analysis of overlapping Thai printed characters. It consists of 2 steps: overlapping point determination and reconstruction of segmented characters. The overlapping point is defined as the intersection point between characters and can be determined by using templates. Then, an overlapping character is separated into segments at the intersection point. The structure of each segment may be an incomplete character and is not identical to the original one. Therefore, the reconstruction process is employed to add the incomplete part of these segments. The proposed scheme has been implemented and tested with 70 patterns of conventionally found in overlapping printed Thai characters with different typefaces and type sizes. The experimental results show that the proposed scheme can segment and reconstruct overlapping characters correctly. The proposed scheme can improve the recognition rate of commercially available software, ThaiOCR1.5 and ArnThai1.0, more than 60 percents

  • PDF

관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템 (Automatic gasometer reading system using selective optical character recognition)

  • 이교혁;김태연;김우주
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.1-25
    • /
    • 2020
  • 본 연구에서는 모바일 기기를 이용하여 획득한 가스계량기 사진을 서버로 전송하고, 이를 분석하여 가스 사용량 및 계량기 기물 번호를 인식함으로써 가스 사용량에 대한 과금을 자동으로 처리할 수 있는 응용 시스템 구조를 제안하고자 한다. 모바일 기기는 일반인들이 사용하는 스마트 폰에 준하는 기기를 사용하였으며, 획득한 이미지는 가스 공급사의 사설 LTE 망을 통해 서버로 전송된다. 서버에서는 전송받은 이미지를 분석하여 가스계량기 기물 번호 및 가스 사용량 정보를 추출하고, 사설 LTE 망을 통해 분석 결과를 모바일 기기로 회신한다. 일반적으로 이미지 내에는 많은 종류의 문자 정보가 포함되어 있으나, 본 연구의 응용분야인 가스계량기 자동 검침과 같이 많은 종류의 문자 정보 중 특정 형태의 문자 정보만이 유용한 분야가 존재한다. 본 연구의 응용분야 적용을 위해서는 가스계량기 사진 내의 많은 문자 정보 중에서 관심 대상인 기물 번호 및 가스 사용량 정보만을 선별적으로 검출하고 인식하는 관심 문자열 인식 기술이 필요하다. 관심 문자열 인식을 위해 CNN (Convolutional Neural Network) 심층 신경망 기반의 객체 검출 기술을 적용하여 이미지 내에서 가스 사용량 및 계량기 기물번호의 영역 정보를 추출하고, 추출된 문자열 영역 각각에 CRNN (Convolutional Recurrent Neural Network) 심층 신경망 기술을 적용하여 문자열 전체를 한 번에 인식하였다. 본 연구에서 제안하는 관심문자열 기술 구조는 총 3개의 심층 신경망으로 구성되어 있다. 첫 번째는 관심 문자열 영역을 검출하는 합성곱신경망이고, 두 번째는 관심 문자열 영역 내의 문자열 인식을 위해 영역 내의 이미지를 세로 열 별로 특징 추출하는 합성곱 신경망이며, 마지막 세 번째는 세로 열 별로 추출된 특징 벡터 나열을 문자열로 변환하는 시계열 분석 신경망이다. 관심 문자열은 12자리 기물번호 및 4 ~ 5 자리 사용량이며, 인식 정확도는 각각 0.960, 0.864 이다. 전체 시스템은 Amazon Web Service 에서 제공하는 클라우드 환경에서 구현하였으며 인텔 제온 E5-2686 v4 CPU 및 Nvidia TESLA V100 GPU를 사용하였다. 1일 70만 건의 검침 요청을 고속 병렬 처리하기 위해 마스터-슬레이브 처리 구조를 채용하였다. 마스터 프로세스는 CPU 에서 구동되며, 모바일 기기로 부터의 검침 요청을 입력 큐에 저장한다. 슬레이브 프로세스는 문자열 인식을 수행하는 심층 신경망으로써, GPU에서 구동된다. 슬레이브 프로세스는 입력 큐에 저장된 이미지를 기물번호 문자열, 기물번호 위치, 사용량 문자열, 사용량 위치 등으로 변환하여 출력 큐에 저장한다. 마스터 프로세스는 출력 큐에 저장된 검침 정보를 모바일 기기로 전달한다.