• 제목/요약/키워드: Character Detection

검색결과 249건 처리시간 0.018초

다중 언어로 작성된 문서 파일에 적용된 문자 인코딩 자동 인식 기법 (A Method for Automatic Detection of Character Encoding of Multi Language Document File)

  • 서민지;김명호
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권4호
    • /
    • pp.170-177
    • /
    • 2016
  • 문자 인코딩은 문서를 컴퓨터에서 이용할 수 있도록 문자 코드 테이블을 이용하여 이진화하는 방법이다. 이진화된 문서를 읽기 위해서는, 문서에 적용된 문자 코드를 이용하여 문자 인코딩을 알아내야 한다. 본 논문에서는 문서의 문자 인코딩을 자동으로 판별하는 방법을 제시한다. 제안하는 방법은 이스케이프 문자를 이용한 판별법, 문서에 나타난 코드 값 범위 판별법, 문서에 나타난 코드 값의 특징 판별법, 각 언어별 자주 사용하는 단어를 이용한 판별법과 같은 여러 단계를 걸쳐 문서에 적용된 문자 인코딩을 판별한다. 자주 사용하는 단어를 이용한 방법은 문서를 언어별로 분류하여 문자 인코딩을 판별하기 때문에, 다국어 문서에서 기존의 방법보다 높은 문자 인코딩 인식률을 보인다. 주로 표현하는 언어의 비중이 20% 미만일 경우, 기존의 방법은 약 50%의 문자 인코딩 인식률을 보였으나, 제안하는 방법은 문자 인코딩에서 표현하는 언어의 비중과는 상관없이 96% 이상의 문자 인코딩 인식률을 보였다.

에지 및 형태학적 재구성에 의한 연결요소를 이용한 자연영상의 문자영역 검출 (Character Region Detection in Natural Image Using Edge and Connected Component by Morphological Reconstruction)

  • 권교현;박종천;전병민
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제5권1호
    • /
    • pp.127-133
    • /
    • 2011
  • 자연영상에 내포되어 있는 문자는 다양한 내용을 표현하는 중요한 정보이다. 기존의 문자 검출 알고리즘은 영상의 복잡도와 주변의 조명, 문자와 유사한 배경색 등의 환경에서 문자영역을 검출하지 못하는 문제점이 있으므로 본 논문에서는 에지 및 형태학적 재구성에 의한 연결요소를 이용한 자연영상에 포함된 문자영역을 검출하는 방법을 제안한다. 첫 번째 단계로, 명암도 영상에서 캐니에지(Canny-Edge) 검출기를 이용한 에지 성분과 형태학적 연산에 의한 지역적 최소/최대값을 갖는 연결요소를 검출하고, 각각 검출된 연결성분을 레이블링하고, 레이블링 된 각 성분에 대해 문자가 갖는 특징을 이용한 후보 문자영역을 검출한다. 마지막으로 검출된 후보 문자 영역을 서로 합병하여 하나의 후보 문자 영역을 생성하고, 후보 문자 영역의 인접성과 유사성으로 후보 문자 영역을 검증하여 최종 문자 영역을 검출한다. 실험결과 제안한 에지 및 연결요소 성분을 이용한 방법은 문자영역 검출의 정확성이 개선되었다.

자연영상에서 적응적 문자-에지 맵을 이용한 텍스트 영역 검출 (Text Region Detection using Adaptive Character-Edge Map From Natural Image)

  • 박종천;황동국;전병민
    • 한국산학기술학회논문지
    • /
    • 제8권5호
    • /
    • pp.1135-1140
    • /
    • 2007
  • 본 논문은 자연영상에서 문자의 크기와 방향에 무관한 적응적 문자-에지 맵을 이용한 에지-기반 텍스트 영역검출 알고리즘을 제안한다. 첫 번째로, 에지 이미지로부터 에지 레이블을 얻고, 레이블 이미지로부터 문자를 찾기 위해 배열문법을 이용하여 적응적 문자-에지 맵을 적용한다. 선택된 레이블은 이웃 레이블과의 거리를 기준으로 클러스터 된다. 그 결과 텍스트 후보 영역이 얻어진다. 최종적으로, 텍스트 후보 영역은 경험적 규칙과 텍스트 영역에 대한 수평/수직 프로파일을 분석함으로서 검증된다. 실험결과 제안한 알고리즘은 다양한 문자의 크기 변화, 문자열의 방향, 그리고 복잡한 배경에서도 강인한 텍스트 영역 검출 결과를 보였다.

  • PDF

자연영상에서 문자의 형태 분석을 이용한 문자영역 추출에 관한 연구 (A Study on Extraction of text region using shape analysis of text in natural scene image)

  • 양재호;한현호;김기봉;이상훈
    • 한국융합학회논문지
    • /
    • 제9권11호
    • /
    • pp.61-68
    • /
    • 2018
  • 본 논문에서는 일상에서 획득할 수 있는 자연 영상에서 문자를 검출하기 위해 영상 개선 및 문자의 형태를 분석하여 문자를 검출하는 방법을 제안한다. 제안하는 방법은 자연 영상에서 문자로 인식될 영역의 검출률을 향상시키기 위해 객체부분의 경계를 언샤프 마스크를 사용하여 강조하였다. 향상된 객체의 경계 부분을 이용하여 영상의 문자 후보영역을 MSER(Maximally Stable Extermal Regions)을 이용하여 검출하였다. 검출된 문자 후보영역에서 실제 문자로 판단될 영역을 검출하기 위해 각 영역들의 형태를 분석하여 글자의 특성을 갖는 영역외의 비 문자영역을 제거하여 실제 문자영역 검출률을 높였다. 본 논문의 정량적 평가를 위해 문자 영역의 검출률과 정확도를 이용하여 기존의 방법들과 비교하였다. 실험결과 기존의 문자 검출 방법보다 제안하는 방법이 비교적 높은 문자영역의 검출률 및 정확도를 보였다.

문자인식을 위한 에지검출 알고리즘에 관한 연구 (A Study on Edge Detection Algorithm for Character Recognition)

  • 이창영;황용연;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.792-794
    • /
    • 2014
  • 문자인식은 문서 및 자동차 번호판 등의 문자정보를 얻는 영상처리 기술이며, 이를 위하여 에지를 검출하는 방법이 주로 사용되고 있다. 기존의 에지검출 방법은 대부분 영상에 가중치 마스크를 적용하는 방법이며, 영상의 전체 영역에 동일한 마스크를 적용하므로 처리결과가 다소 미흡하다. 따라서 본 논문은 문자인식에 적합하도록 화소의 분포 및 위치를 고려한 가중치 마스크를 적용하여 에지검출 알고리즘을 제안하였다.

  • PDF

한글 모음의 구조적 특징을 이용한 문자영역 검출 기법 (Character Region Detection Using Structural Features of Hangul Vowel)

  • 박종천;이근왕;박형근
    • 한국산학기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.872-877
    • /
    • 2012
  • 본 논문은 한글 모음의 구조적 특징을 이용하여 자연영상에 포함된 한글 문자영역을 검출하는 기법을 제안하였다. 자연 영상을 명도영상으로 변환하고 에지 및 연결요소 기반 방법으로 특징값을 추출하며, 추출된 특징값은 필터링을 수행하여 한글 문자의 특징에 맞지 않는 특징값을 제거하여 한글 문자영역 병합을 위한 후보를 선정한다. 선정된 후보 특징값은 한글 자소 병합 알고리즘으로 하나의 문자로 병합하여 후보 문자영역으로 검출하고, 한글 문자 유형 판별 알고리즘으로 한글 문자영역 여부를 판별함으로서 최종적인 한글 문자영역을 검출한다. 실험결과, 복잡한 배경을 갖고 다양한 환경에서 촬영된 영상에서 한글 문자영역을 효과적으로 검출하였고, 제안한 문자영역 검출 방법은 향상된 검출 결과를 보여 주었다.

자연영상에서 한글 및 영문자의 구조적 특징을 이용한 문자영역 검출 (Character Region Detection Using Structural Features of Hangul & English Characters in Natural Image)

  • 오명관;박종천
    • 한국산학기술학회논문지
    • /
    • 제15권3호
    • /
    • pp.1718-1723
    • /
    • 2014
  • 본 논문은 한글 및 영문자의 구조적 특징을 이용하여 자연영상에서 문자영역을 검출하는 기법을 제안하였다. 자연 영상에서 에지 특징 값을 추출하고 추출된 특징 값은 필터링을 수행하여 문자의 특징에 맞지 않는 특징 값을 제거하여 문자영역 후보를 선정한다. 선정된 문자영역 후보는 한글 자소 병합 알고리즘으로 하나의 문자로 병합하여 후보 문자영역으로 검출하고, 한글 문자 유형 판별 알고리즘으로 한글 문자영역 여부를 판별함으로서 한글 문자영역을 검출하고, 영문자는 영문자 에지 특징 값을 적용하여 영문자 영역을 검출한다. 실험결과, 복잡한 배경을 갖고 다양한 환경에서 촬영된 영상에서 한글 및 영문자 영역을 효과적으로 검출하였고, 제안한 문자영역 검출 방법은 향상된 검출 결과를 보여 주었다.

Precise Detection of Car License Plates by Locating Main Characters

  • Lee, Dae-Ho;Choi, Jin-Hyuk
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.376-382
    • /
    • 2010
  • We propose a novel method to precisely detect car license plates by locating main characters, which are printed with large font size. The regions of the main characters are directly detected without detecting the plate region boundaries, so that license regions can be detected more precisely than by other existing methods. To generate a binary image, multiple thresholds are applied, and segmented regions are selected from multiple binarized images by a criterion of size and compactness. We do not employ any character matching methods, so that many candidates for main character groups are detected; thus, we use a neural network to reject non-main character groups from the candidates. The relation of the character regions and the intensity statistics are used as the input to the neural network for classification. The detection performance has been investigated on real images captured under various illumination conditions for 1000 vehicles. 980 plates were correctly detected, and almost all non-detected plates were so stained that their characters could not be isolated for character recognition. In addition, the processing time is fast enough for a commercial automatic license plate recognition system. Therefore, the proposed method can be used for recognition systems with high performance and fast processing.

해리스 코너 검출기를 이용한 배경 영상에서의 문자 검출 (Character Detection in Complex Scene Image using Harris Corner Detector)

  • 김민하;김미경;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.97-100
    • /
    • 2013
  • 본 논문은 복잡한 배경 영상에서 필기체가 아닌 수평, 수직 성분이 많이 포함된 문자 검출 방법을 제안한다. 본 논문에서 검출하고자 하는 문자는 코너 성분이 많이 밀집되어 있으며 배경 영상은 그에 비해 코너 성분이 적고 드문드문하다는 특징을 이용하여 먼저 해리스 코너 검출기를 이용하여 전체 영상에서 코너를 검출한다. 검출된 코너들의 위치 정보를 이용해 밀집되어 있는 코너들을 클러스터링 함으로써 문자 영역을 검출한다. 검출된 문자 영역간의 위치 정보와 히스토그램 분포를 비교하여 비슷한 특징을 갖는 영역들을 합치고 문자 성분의 특징을 갖지 않는 영역은 필터링 하여 문자 영역을 개선한다. 문자 영역에서 R채널, G채널, B채널 각각의 채널에 대한 히스토그램 분포를 분석하여 문자를 검출한다.

  • PDF

다양한 배경에서 히스토그램과 한글의 구조적 특징을 이용한 문자 검출 방법 (Hangeul detection method based on histogram and character structure in natural image)

  • 표성국;박영수;이강성;이상훈
    • 한국융합학회논문지
    • /
    • 제10권3호
    • /
    • pp.15-22
    • /
    • 2019
  • 본 논문에서는 자음과 모음이 분리되어 검출되는 한글의 문제점을 해결하기 위해 히스토그램과 자음, 모음 문자의 구조적 특징을 이용한 한글 검출 방법을 제안하였다. 제안하는 방법은 한글 검출 과정에서 불필요한 잡음을 제거하기 위해 DoG(Difference of Gaussian)을 이용하여 배경을 제거하였다. 배경이 제거된 이미지에서 누적 히스토그램을 사용하여 위해 이진화 이미지로 변환하였다. 그 후 수평 누적 히스토그램을 사용하여 문자열 위치를 찾고, 찾은 문자열 이미지에서 수직히스토그램을 사용하여 문자 결합을 진행하였다. 하지만 '가', '라' '귀' 와 같이 자음 모음이 수평으로 존재하는 단어는 하나의 문자로 결합이 어렵기 때문에 문자의 구조적 특징을 이용하여 결합하였다. 본 실험에서는 다양한 배경을 가진 알파벳으로 구성된 이미지, 한글로 구성된 이미지, 알파벳과 한글이 혼합된 이미지를 가지고 실험하였다. 제안하는 방법은 K-means와 MSER 문자 검출 방법이랑 비교했을 때 알파벳 검출률은 2%정도 낮지만 한글이 포함된 문자 검출 방면에서는 90.6%로 약 5% 높은 검출률을 보였다.